

POMPE SOMMERGIBILI

CATALOGO TECNICO

CERTIFICAZIONI

CERTIFICATO N. CERTIFICATE N. 9101.COGE **∣** Net

SI CERTIFICA CHE IL SISTEMA DI GESTIONE PER LA QUALITA DI WE HEREBY CERTIFY THAT THE QUALITY MANAGEMENT SYSTEM OPERATED BY

DWT HOLDING SPA

VIA MARCO POLO 14 - 35035 MESTRINO (PD)

UNITA' OPERATIVE / OPERATIVE UNITS

Vedere gli Allegati per le Unità Operative (n° 6 pagine) View the Annexes for the Operative Units (n° 6 pages)

E' CONFORME ALLA NORMA / IS IN COMPLIANCE WITH THE STANDARD $ISO\ 9001;2015$

PER LE SEGUENTI ATTIVITA' / FOR THE FOLLOWING ACTIVITIES

Progettazione, produzione, commercializzazione e assistenza di pompe, elettropompe, gruppi di pompaggio e sistemi elettronici di controllo per acqua fredda, calda ad uso civile, industriale ed agricolo e relativi componenti ed accessori Design, production, sale and assistance of pumps, electric pumps, pumping units and electronic control systems for cold and hot water, for residential, industrial and agriculture use including components and accessories

Ulteriori informazioni riguardanti l'applicabilità dei requisiti ISO 9001:2015 possono essere ottenute consultando l'organizzazione Further clarifications regarding the applicability of ISO 9001:2015 requirements may be obtained by consulting the organization

IL PRESENTE CERTIFICATO E' SOGGETTO AL RISPETTO DEL REGOLAMENTO PER LA CERTIFICAZIONE DEI SISTEMI DI GESTIONE THE USE AND THE VALIDITY OF THE CERTIFICATE SHALL SATISFY THE REQUIREMENTS OF THE RULES FOR CERTIFICATION OF MANAGEMENT SYSTEMS

SCADENZA EXPIRY 2024-05-27

ACCREDIA 5 SGQ N° 005 A

IAF: 18, 19, 29

ALLEGATO N. 9101.COGE-1 ANNEX N.

∣∴Net

DWT HOLDING SPA VIA MARCO POLO 14 - 35035 MESTRINO (PD) DAB PUMPS SPA
VIA MARCO POLO 14 - 35035 MESTRINO (PD)

Attività: Activities:

Progettazione, produzione, commercializzazione e assistenza di pompe, elettropompe, gruppi di pompaggio e sistemi elettronici di controllo per acqua fredda, calda ad uso civile, industriale el agricolo e relativi componenti ed accessori Design, production, salo and assistance of pumps, electric pumps, pumping units and electronic control systems for cold and hot water, for residential, industrial and agriculture use including components and accessories

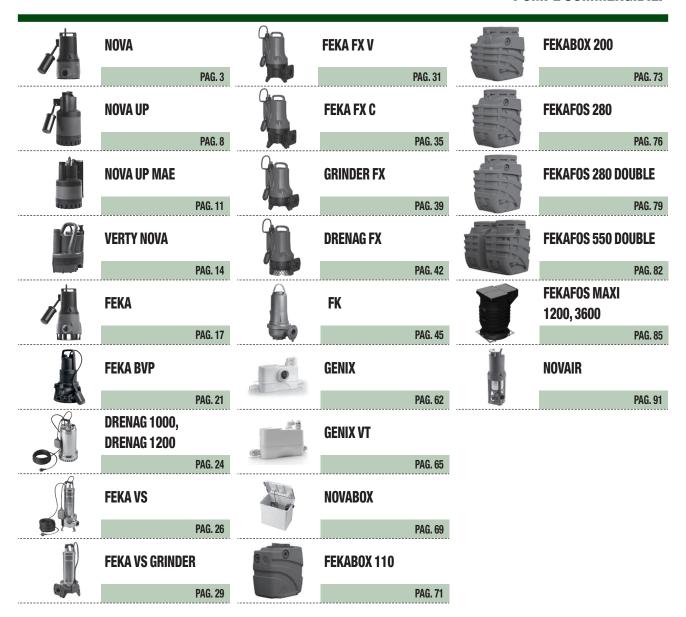
IL PRESENTE ALLEGATO HA LO SCOPO DI ESPLICITAME LE ATTIVITÀ SVOLTE PRESSO IL SINGOLO SITOUNITÀ OPERATIVA NELL'AMISTO DELLA CERTIFICAZIONE DEL SISTEMA DI GESTIONE RIAGORI DEL SISTEMA DI GESTIONE RIAGORI PARE ANO PRESENT ANNEXI SI TO EXPLAIN THE ACTIVITES PERFORMED IN EACH SITEOPERATIVE UNIT OF THE MANAGEMENT SYSTEM GESTIFICATION SISCED TO UN'T HOLDING SPA

PER LA VALIDITA' RIFERIRSI AL CERTIFICATO N. 9101.COGE FOR THE VALIDITY PLEASE REFER TO CERTIFICATE N. 9101.COGE

PRIMA CERTIFICAZIONE FIRST CERTIFICATION 1995-07-17

SCADENZA EXPIRY 2024-05-27

ACCREDIA 5 SGQ N° 005 A Hentro degli Accordi di Matuo Riconoscimento EA, SAF e SLAC Signatory of EA, SAF and SLAC Mutual Recognition Agreemance


IAF: 18, 19, 29

Le validità del certificato è subordinata a sonvegliana del Sistema di Cessione con periodicità triennale. The validity of the certificate is submitted to annual audit ar of the entre management flusion utilino trisse a sear.

INDICE

POMPE SOMMERGIBILI

ACCESSORI - QUADRI

APPENDICE TECNICA

PAG. 93

PAG. 121

NOVA

POMPE SOMMERGIBILI PER ACQUE CHIARE

NOVA 600 M

DATI TECNICI

Portata minima e massima: da 1 m³/h a 16 m³/h

Prevalenza massima: 10,2 m

Massima profondità di immersione: 7 metri con cavo di lunghezza

adeguata

Tipo di liquido pompato: acque di scarico chiare (grigie e meteoriche)

Passaggio libero: 5 mm o 10 mm a seconda dei modelli

Livello minimo di aspirazione:

NOVA 180/200 8mm NOVA 300 13mm NOVA 600 30mm

Temperatura del liquido supportata min. e max.:

da $+0^{\circ}$ C a $+35^{\circ}$ C per uso domestico da $+0^{\circ}$ C a $+50^{\circ}$ C per altri impieghi **Grado di protezione del motore:** IP 68 **Classe di isolamento del motore:** F

Materiale di costruzione girante/i: tecnopolimero

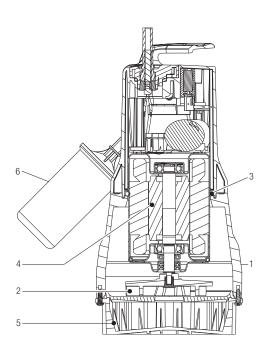
Alimentazione Monofase: 230 v 50 Hz **Alimentazione Trifase:** 3x400V 50 Hz

Tipo di installazione possibile: fissa o mobile in posizione verticale

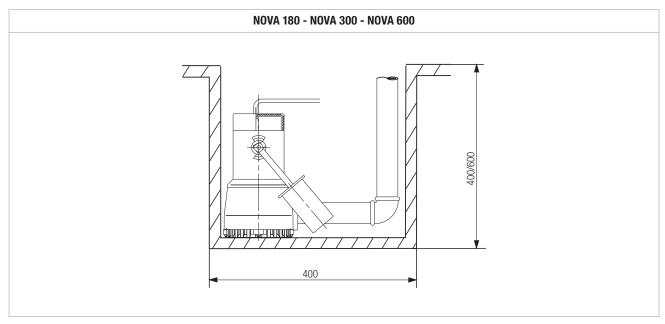
Nova è una pompa sommergibile per il drenaggio di acque chiare in ambito domestico e residenziale. Completamente ridisegnata nel 2019 per i quarant'anni di commercializzazione, ora è ancora più resistente, affidabile ed ergonomica nell'utilizzo. Nova può essere utilizzata anche per lo svuotamento di serbatoi o cisterne.

CARATTERISTICHE COSTRUTTIVE POMPA

Il corpo pompa, la girante e la griglia di aspirazione sono in tecnopolimero. Robusta e affidabile con la triplice tenuta ad anelli in bagno d'olio. La pompa permette l'aspirazione del liquido fino al livello minimo di 8 mm e la possibilità di funzionamento a secco fino ad 1 minuto.


CARATTERISTICHE COSTRUTTIVE MOTORE

Motore sommergibile di tipo asincrono a servizio continuo. Statore inserito in un involucro ermetico in acciaio inossidabile e rotore montato su cuscinetti a sfera sovradimensionati. Protezione termica incorporata in tutte le versioni monofase. Motore in acciaio inossidabile AISI 304 e albero in acciaio AISI 431 per una maggiore resistenza agli attacchi corrosivi.

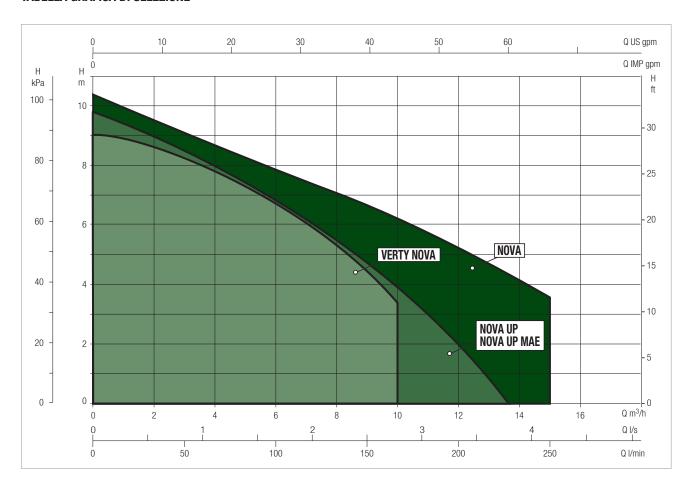


MATERIALI

N°	PARTICOLARI *		MATERIALI			
1	CORPO POMPA		TECNOPOLIMERO			
2	GIRANTE		TECNOPOLIMERO			
3	GUARNIZIONE OR		NBR			
4	MOTORE	CALOTTA	ACCIAIO INOSSIDABILE AISI 304 X5 CrNi 1810 - UNI 6900/71			
4	MOTORE	ALBERO ROTORE	ACCIAIO INOSSIDABILE AISI 431			
5	GRIGLIA DI ASPIRAZI	ONE	TECNOPOLIMERO			
6	GALLEGGIANTE		TECNOPOLIMERO			

DIMENSIONI MINIME DEI POZZETTI PER L'INSTALLAZIONE FISSA A FUNZIONAMENTO AUTOMATICO:

^{*} A contatto con il liquido

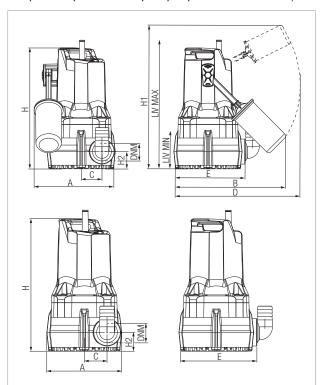

GAMMA NOVA

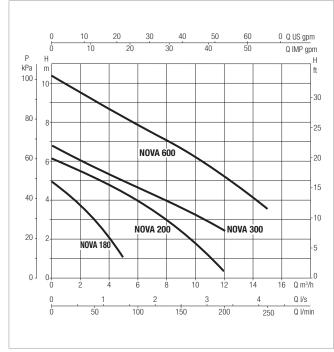
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE - NOVA


MODELLO	Q= m³/h	0	3	6	9	12	
MODELLO	Q=I/min	0	50	100	150	200	
NOVA 180 MA - MNA		5	3,2	-	-	-	
NOVA 200 MNA	H (m)	H (m)	7,1	5,6	4,2	2,8	1,5
NOVA 300 MA		7,2	5,8	4,6	3,4	2,2	
NOVA 600 MA-MNA-TNA		10,4	9	7,8	6,7	5,3	

NOVA 180-200 - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE CHIARE AD USO DOMESTICO

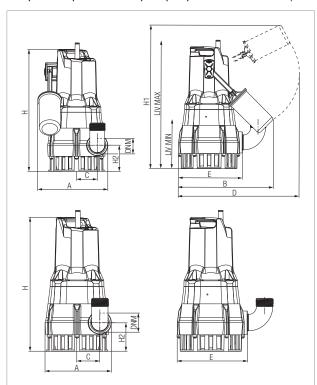
Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico

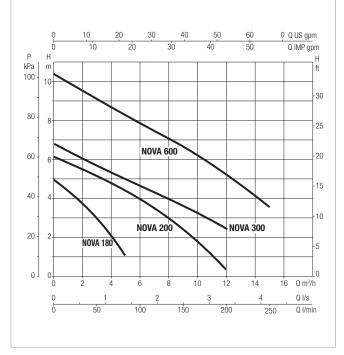
Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

MODELLO	Q= m³/h	0	3	6	9	12
MUDELLU	Q=I/min	0	50	100	150	200
NOVA 180 MA - MNA	H (m)	5	3,2	-	-	-
NOVA 200 MNA	H (m)	7,1	5,6	4,2	2,8	1,5

		DATI ELETTRICI											
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NO	MINALE	In	CONDENSATORE							
	50 Hz	kW	kW	HP	A	μF	Vc						
NOVA 180 MA - MNA	1X230 V~	0,19	0,2	0,27	0,9	5	450						
NOVA 200 MNA	1X230 V~	0,35	0,22	0,30	1,5	8	450						

A: Automatica con galleggiante - NA: Non automatica senza galleggiante


MODELLO	A B C		n	D E		Н Н1		LIV.	LIV.	DNM	DIMENSIONI IMBALLO			CAVO*	VOLUME	PES0	
WIODELEO	A	В	U	ט	_	"	111	H2	MIN.	MAX.	GAS	L/A	L/B	Н	UAVU	(mc)	Kg
NOVA 180 MA	180	247	46	296	158	268	345	38	77	285	1" 1/4	287	202	320	5m H05 10m H05	0,019	4,6
NOVA 180 MNA	151	-	46	-	158	268	-	38	-	-	1" 1/4	287	202	320	10m H05	0,019	4,6
NOVA 200 MNA	151	-	46	-	158	268	-	38	-	-	1" 1/4	287	202	320	10m H05	0,019	4,6


^{*}In conformità alla normativa europea EN 60335-2-41 per la pompa in utilizzo esterno è obbligatori il cavo di alimentazione di 10m.

NOVA 300-600 - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE CHIARE AD USO DOMESTICO

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

MODELLO	Q= m³/h	0	3	6	9	12	15
MODELLO	Q=I/min	0	50	100	150	200	250
NOVA 300 MA	H (m)	7,2	5,8	4,6	3,4	2,2	-
NOVA 600 MA-MNA-TNA	H (m)	10,4	9	7,8	6,7	5,3	3.5

	DATI ELETTRICI											
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NO	MINALE	In	CONDENSATORE						
	50 Hz	kW	kW	HP	A	μF	Vc					
NOVA 300 MA	1X230 V~	0,35	0,22	0,29	1,5	8	450					
NOVA 600 MA-MNA	1X230 V~	0,66	0,5	0,67	3,0	10	450					
NOVA 600 TNA	3X400 V~	0,66	0,5	0,67	1,7	-	-					

A: Automatica con galleggiante - NA: Non automatica senza galleggiante

MODELLO	A D 0		C D	_	ЕН	U4	Un	H2 LIV.	LIV.	DNM	DIMENSIONI IMBALLO			CAVO*	VOLUME	PES0	
MODELLO	A	В	6	ע		П	H1	П	MIN.	MAX.	GAS	L/A	L/B	Н	GAVU	(mc)	Kg
NOVA 300 MA	180	247	46	296	158	277	354	47	85	285	1" 1/4	287	202	320	5m H05 10m H05	0,019	4,6
NOVA 600 MA	189	255	56	296	174	329	443	71	190	390	1" 1/4	287	202	431	5m H05 10m H05	0,025	7
NOVA 600 MNA	163	-	56	-	174	329	-	71	-	-	1" 1/4	287	202	431	10m H05	0,025	7
NOVA 600 TNA	163	-	56	-	174	329	-	71	-	-	1" 1/4	287	202	431	10m H07	0,025	7

^{*}In conformità alla normativa europea EN 60335-2-41 per la pompa in utilizzo esterno è obbligatori il cavo di alimentazione di 10m.

NOVA UP

POMPE SOMMERGIBILI

DATI TECNICI

Campo di funzionamento:

da 1 a 15 m³/h con prevalenze fino a 10 metri.

Campo di temperatura del liquido:

da 0°C a +35°C per uso domestico.

Liquido pompato: acque torbide senza fibre

Profondità minima di pescaggio:

 NOVA UP 300 M-A
 120 mm

 NOVA UP 300 M-NA
 60 mm

 NOVA UP 600 M-A
 165 mm

 NOVA UP 600 M-NA
 70 mm

Immersione massima: 7 metri.

Installazione: verticale, fissa o portatile.

Grado di protezione: IP 68. **Classe di isolamento:** F.

APPLICAZIONI

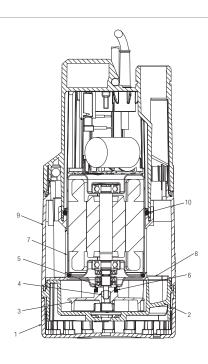
La pompa sommergibile da drenaggio a mandata verticale è idonea per impieghi domestici di applicazioni fisse a funzionamento automatico, per prosciugamento di scantinati e autorimesse soggetti ad allagamenti. Grazie alla sua forma compatta e maneggevole trova anche particolare applicazione come pompa portatile per casi di emergenza quali: prelievo d'acqua da serbatoi o fiumi, svuotamento di piscine e fontane o di scavi e sottopassaggi. Idonea anche per giardinaggio ed hobbistica in genere. Questa pompa può essere utilizzata con liquidi contenenti corpi di dimensioni solide fino a 10mm. L'interruttore di livello permette una installazione fissa garantendone il funzionamento automatico. Dotata di filtro removibile, aspira fino a un minimo di 2/3mm (con filtro rimosso).

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Corpo pompa, girante, calotta e griglia di aspirazione in tecnopolimero idroresistente.

Motore, albero rotore e viteria in acciaio inossidabile.

Triplice tenuta ad anelli interposti con precamera d'olio.

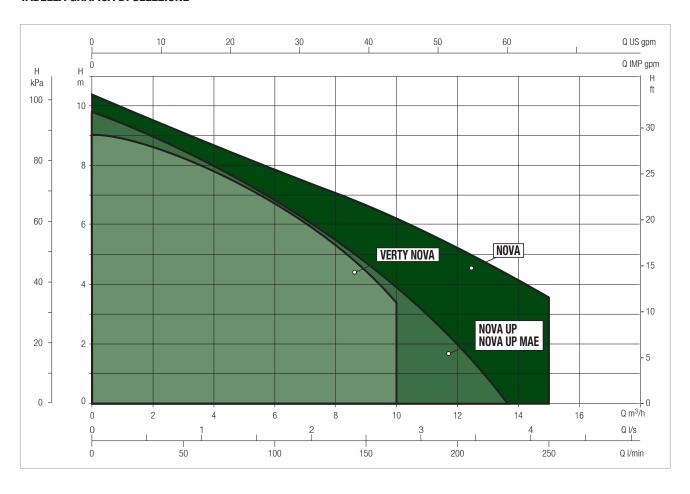

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Di tipo sommergibile asincrono a servizio continuo.

Statore inserito in un involucro ermetico in acciaio inossidabile e coperto da una calotta che racchiude cablaggi, microinterruttore e condensatore. Rotore montato su cuscinetti a sfere ingrassati a vita e sovradimensionati per garantire silenziosità e durata. Protezione termo-amperometrica incorporata e condensatore permanentemente inserito.

N°	PARTICOLARI *		MATERIALI
1	FILTRO ASPIRAZIONI		TECNOPOLIMERO
2	BASE		TECNOPOLIMERO
3	GIRANTE		TECNOPOLIMERO
4	DADO		ACCIAIO INOX A2 DIN982-UNI7473
5	ROSETTA		ACCIAIO INOX A2
6	ANELLO V.RING		NBR
7	MOTORF	CALOTTA	ACCIAIO INOSSIDABILE AISI 304 X5 CrNi 1810 - UNI 6900/71
,	MOTONE	ALBERO ROTORE	ACCIAIO INOX AISI 416 UNI EN 10088-1 X12CRS13
8	DIAFRAMMA	<u> </u>	TECNOPOLIMERO
9	CORPO		TECNOPOLIMERO
10	GUARNIZIONE OR		NBR

^{*} A contatto con il liquido

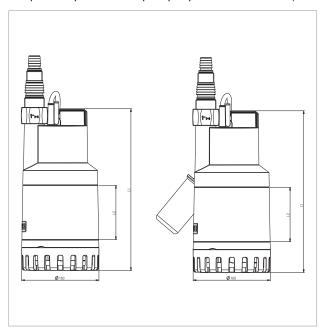

GAMMA NOVA

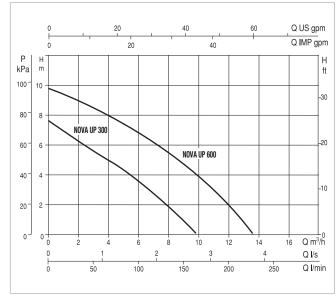
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE - NOVA UP


MODELLO	Q=m³/h	0	1	2	3	4,5	5	6	7	7,5	9	10	12	13,5	15
MODELLO	Q=I/min	0	16,6	33,3	50	75	83,3	100	116,6	125	150	166,6	200	225	250
NOVA UP 300 M	Н	7,6	6,9	6,25	5,6	4,7	4,4	3,6	2,8	2,3	1				
NOVA UP 600 M	(m)	9,8	9,4	9	8,5	7,7	7,4	6,8	6,2	5,9	4,7	3,9	2	0,3	

NOVA UP - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE CHIARE AD USO DOMESTICO

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1~\text{mm}^2/\text{s}$ e densità pari a $1000~\text{kg/m}^3$. Tolleranza delle curve secondo ISO9906.

			DATI ELETTRICI		
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NOI	MINALE	In
	50 Hz	kW	kW	HP	A
NOVA UP 300 M-A	1 x 220 - 240 V ~	0,38	0,21	0,28	1,5
NOVA UP 300 M-NA	1 x 220 - 240 V ~	0,38	0,21	0,28	1,5
NOVA UP 600 M-A	1 x 220 - 240 V ~	0,77	0,52	0,69	3,5
NOVA UP 600 M-NA	1 x 220 - 240 V ~	0,77	0,52	0,69	3,5

MODELLO	L1	L2	DNM GAS	DI	MENSIONI IMBAL	L0	CAVO	VOLUME	PES0	
MIODELLO	LI	L2	DINIVI GAS	L/A	L/B	Н	GAVU	(mc)	Kg	
NOVA UP 300 M-A	296	75,9	1"%	265	225	317	10 mt.	0,018	5,8	
NOVA UP 300 M-NA	296	75,9	1"%	265	225	317	10 mt.	0,018	5,6	
NOVA UP 600 M-A	332	111,6	1"%	265	225	352	10 mt.	0,021	7,3	
NOVA UP 600 M-NA	332	111,6	1"%	265	225	352	10 mt.	0,021	7,1	

NOVA UP MAE

POMPE SOMMERGIBILI PER ACQUE CHIARE

DATI TECNICI

Campo di funzionamento:

da 1 a 15 m³/h con prevalenze fino a 10 metri.

Campo di temperatura del liquido:

da 0°C a +35°C per uso domestico.

Liquido pompato: acque torbide senza fibre

Profondità minima di pescaggio:

NOVA UP 300 M-AE 60 mm NOVA UP 600 M-AE 70 mm

Immersione massima: 7 metri.

Installazione: verticale, fissa o portatile.

Grado di protezione: IP 68. **Classe di isolamento:** F.

APPLICAZIONI

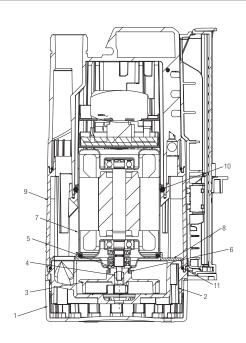
La pompa sommergibile da drenaggio a mandata verticale è idonea per impieghi domestici di applicazioni fisse a funzionamento automatico, per prosciugamento di scantinati e autorimesse soggetti ad allagamenti. La versione è particolarmente adatta per applicazioni in pozzetti stretti o dove è richiesta aspirazione in automatico fino a 2/3mm. Grazie alla sua forma compatta e maneggevole trova anche particolare applicazione come pompa portatile per casi di emergenza quali: prelievo d'acqua da serbatoi o fiumi, svuotamento di piscine e fontane o di scavi e sottopassaggi. Idonea anche per giardinaggio ed hobbistica in genere. Questa pompa può essere utilizzata con liquidi contenenti corpi di dimensioni solide fino a 10mm. Il selettore di livello elettronico permette una installazione fissa garantendone il funzionamento automatico, consentendo la selezione del livello di liquido per l'accensione automatica. Dotata di filtro removibile, aspira fino a un minimo di 2/3mm (con filtro rimosso).

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Corpo pompa, girante, calotta e griglia di aspirazione in tecnopolimero idroresistente.

Motore, albero rotore e viteria in acciaio inossidabile.

Triplice tenuta ad anelli interposti con precamera d'olio.

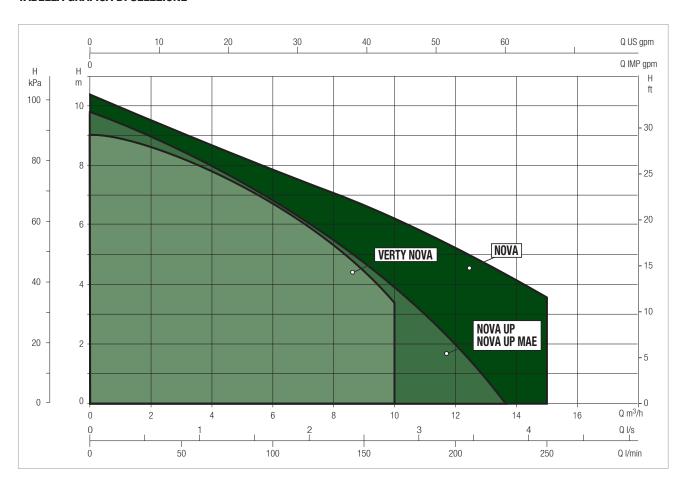

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Di tipo sommergibile asincrono a servizio continuo.

Statore inserito in un involucro ermetico in acciaio inossidabile e coperto da una calotta che racchiude cablaggi, microinterruttore e condensatore. Rotore montato su cuscinetti a sfere ingrassati a vita e sovradimensionati per garantire silenziosità e durata. Protezione termo-amperometrica incorporata e condensatore permanentemente inserito.

N°	PARTICOLARI *		MATERIALI			
1	FILTRO ASPIRAZIONE		TECNOPOLIMERO			
2	BASE		TECNOPOLIMERO			
3	GIRANTE		TECNOPOLIMERO			
4	DADO		ACCIAIO INOX A2 DIN982-UNI7473			
5	ROSETTA		ACCIAIO INOX A2			
6	ANELLO V.RING		NBR			
7	MOTORF	CALOTTA	ACCIAIO INOX AISI 304 X5 CrNi 1810 - UNI 6900/71			
,	MOTORE	ALBERO ROTORE	ACCIAIO INOX AISI 416 UNI EN 10088-1 X12CRS13			
8	DIAFRAMMA		TECNOPOLIMERO			
9	CORPO		TECNOPOLIMERO			
10 - 11	GUARNIZIONE OR		NBR			

^{*} A contatto con il liquido

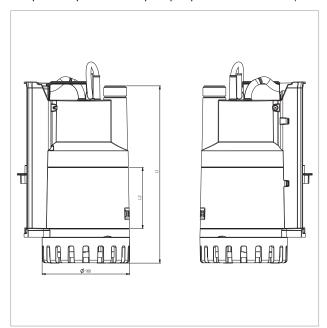


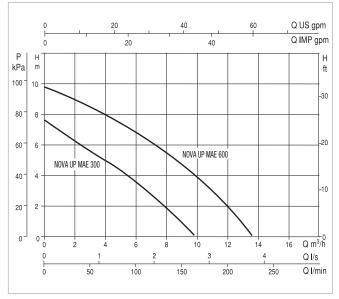
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE - NOVA UP MAE


MODELLO	Q=m³/h	0	1	2	3	4,5	5	6	7	7,5	9	10	12	13,5	15
	Q=I/min	0	16,6	33,3	50	75	83,3	100	116,6	125	150	166,6	200	225	250
NOVA UP 300 M-AE	Н	7,6	6,9	6,25	5,6	4,7	4,4	3,6	2,8	2,3	1				
NOVA UP 600 M-AE	(m)	9,8	9,4	9	8,5	7,7	7,4	6,8	6,2	5,9	4,7	3,9	2	0,3	

NOVA UP MAE - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE CHIARE AD USO DOMESTICO

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1~\text{mm}^2/\text{s}$ e densità pari a $1000~\text{kg/m}^3$. Tolleranza delle curve secondo ISO9906.

		DATI ELETTRICI											
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NON	In									
	50 Hz	kW	kW	HP	A								
NOVA UP 300 M-AE	1 x 220 - 240 V ~	0,38	0,21	0,28	1,5								
NOVA UP 600 M-AE	1 x 220 - 240 V ~	0,77	0,52	0,69	3,5								

MODELLO	14	L2	DNM GAS	DII	MENSIONI IMBAL	LO	CAVO	VOLUME	PES0
WODELEO	LI	LZ	DIVIVI GAS	L/A	L/B	Н	UAVU	(mc)	Kg
NOVA UP 300 M-AE	296,2	75,9	1" %	265	225	317	10 mt.	0,018	5,6
NOVA UP 600 M-AE	324	111,6	1" %	265	225	352	10 mt.	0,021	7,3

VERTY NOVA

POMPE SOMMERGIBILI CON GALLEGGIANTE INTERNO

DATI TECNICI

Campo di funzionamento:

da 1 a 10m³/h con prevalenze fino a 9 metri.

Campo di temperatura del liquido:

da 0°C a +35°C per uso domestico.

Liquido pompato: acque torbide senza fibre. Limite di adescamento della pompa: 10-15mm in funzionamento manuale. Immersione massima: 7 metri.

Installazione: verticale, fissa o portatile

Grado di protezione: IP 68. **Classe di isolamento:** F.

Livelli di ON/OFF pompa in modalità automatica:

VERTY NOVA 200: 110 mm (Altezza di avvio pompa)

45 mm (Altezza di spegnimento pompa)

VERTY NOVA 400: 155 mm (Altezza di avvio pompa)

45 mm (Altezza di spegnimento pompa)

APPLICAZIONI

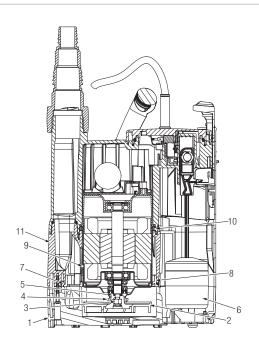
La pompa sommergibile da drenaggio a mandata verticale è idonea per impieghi domestici di applicazioni fisse a funzionamento automatico, per prosciugamento di scantinati ed autorimesse soggetti ad allagamenti. Grazie alla sua forma compatta e maneggevole, e al galleggiante integrato, è particolarmente adatta per pozzetti di scarico di dimensioni ridotte (minimo 20x20cm). Può trovare applicazione come pompa portatile per casi di emergenza quali: prelievo d'acqua da serbatoi o fiumi, svuotamento di piscine e fontane o di scavi e sottopassaggi. Idonea anche per giardinaggio ed hobbistica in genere. Questa pompa può essere utilizzata con liquidi contenenti corpi di dimensioni solide fino a 5mm. L'interruttore di livello a galleggiante integrato permette una installazione fissa garantendone il funzionamento automatico. Dotata di facile accesso al galleggiante per manutenzione e selettore modalità automatica o manuale. Livello minimo di aspirazione fino a 2/3mm.

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Corpo pompa, girante, calotta e griglia di aspirazione in tecnopolimero idroresistente.

Motore, albero rotore e viteria in acciaio inossidabile.

Triplice tenuta ad anelli interposti con precamera d'olio.

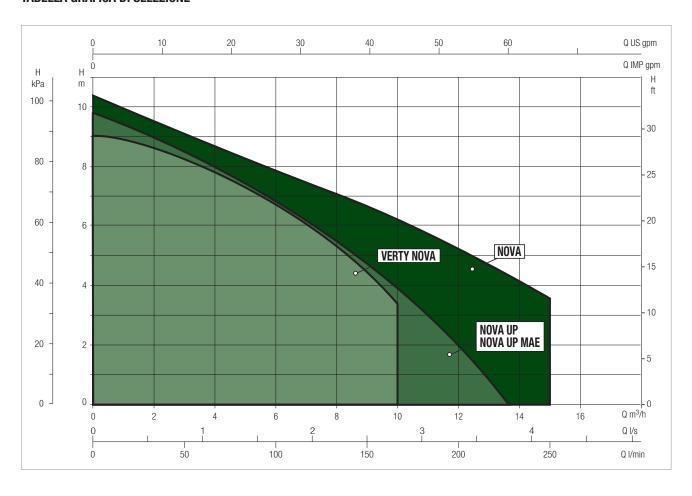

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Di tipo sommergibile asincrono a servizio continuo.

Statore inserito in un involucro ermetico in acciaio inossidabile e coperto da una calotta che racchiude cablaggi, microinterruttore e condensatore. Rotore montato su cuscinetti a sfere ingrassati a vita e sovradimensionati per garantire silenziosità e durata. Protezione termo-amperometrica incorporata e condensatore permanentemente inserito.

N°	PARTICOLARI *		MATERIALI		
1	BASE FILTRO		TECNOPOLIMERO		
2	GIRANTE		TECNOPOLIMERO		
3	DADO		ACCIAIO INOX A2 DIN982-UNI7473		
4	ANELLO V.RING		NBR		
5	ROSETTA		ACCIAIO INOX A2		
6	GALLEGGIANTE		TECNOPOLIMERO		
7	GUARNIZIONE OR		NBR		
8	DIAFRAMMA		TECNOPOLIMERO		
9	MOTORF	CALOTTA	ACCIAIO INOX AISI 304 X5 CrNi 1810 - UNI 6900/71		
9	ALBERO ROTORE		ACCIAIO INOX AISI 416 UNI EN 10088-1 X12CRS13		
10	GUARNIZIONE OR		NBR		
11	CORPO		TECNOPOLIMERO		

^{*} A contatto con il liquido

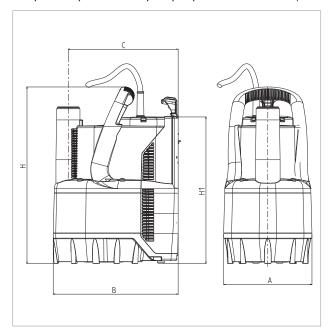

GAMMA NOVA

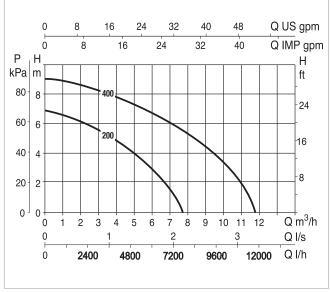
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE - VERTY NOVA


	MODELLO	Q=m³/h	0	1	2	3	4,5	5	6	7	7,5	9	10	12	13,5	15
MIODELLO	Q=I/min	0	16,6	33,3	50	75	83,3	100	116,6	125	150	166,6	200	225	250	
	VERTY NOVA 200 M	Н	6,9	6,5	6	5,8	4,5	4	3	1,8						
	VERTY NOVA 400 M	(m)	9	8,8	8,5	8,1	7,8	7	6,7	6	5,7	4,2	3,5			

VERTY NOVA - POMPE SOMMERGIBILI CON GALLEGGIANTE INTEGRATO PER DRENAGGIO ACQUE CHIARE AD USO DOMESTICO

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1~\text{mm}^2/\text{s}$ e densità pari a $1000~\text{kg/m}^3$. Tolleranza delle curve secondo ISO9906.

		DATI ELETTRICI											
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NOI	In									
	50 Hz	kW	kW	HP	A								
VERTY NOVA 200 M	1 x 230 V ~	0,3	0,2	0,28	1,3								
VERTY NOVA 400 M	1 x 230 V ~	0,6	0,4	0,55	2,6								

MODELLO	٨	D	C ØD		н н		DNM GAS	DIME	NSIONI IMB	ALLO	CAV0	VOLUME	PES0
MODELLO	A	ט	U	טע	"	111	DIVIVI GAS	L/A	L/B	Н	UAVU	(mc)	Kg
VERTY NOVA 200 M	158	225	200	33	318	265	1" %	222	193	340	10 mt.	0,014	4,2
VERTY NOVA 400 M	158	225	200	33	354	301	1"%	222	193	340	10 mt.	0,014	5,1

POMPE SOMMERGIBILI PER ACQUE REFLUE, CHIARE, GRIGIE E METEORICHE

DATI TECNICI

Portata minima e massima: da 1 m³/h a 16 m³/h

Prevalenza massima: 7,5 m

Massima profondità di immersione: 7 metri con cavo di lunghezza

adeguata.

Tipo di liquido pompato: acque di scarico, acque reflue e acque piovane

Passaggio libero: 25 mm

Livello minimo di aspirazione: 38 mm

Temperatura del liquido supportata min. e max.:

da +0°C a +35°C per uso domestico da +0°C a +50° C per altri impieghi Grado di protezione del motore: IP 68 Classe di isolamento del motore: F

Materiale di costruzione girante/i: tecnopolimero

Alimentazione Monofase: 230 V 50 Hz

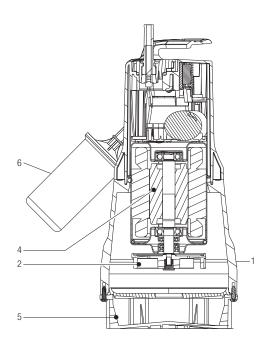
Alimentazione Trifase: 3x230 V 50 Hz / 3x400 V 50 Hz

Tipo di installazione possibile: fissa o portatile in posizione verticale

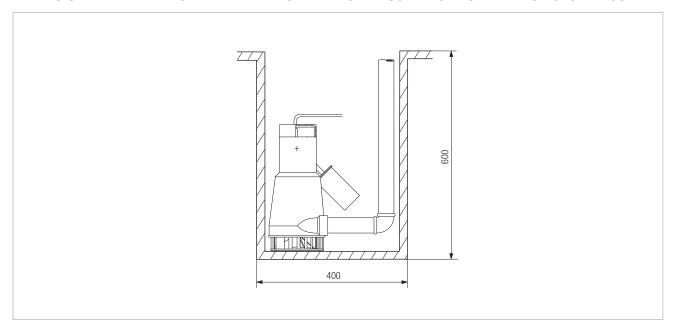
Feka 300 e Feka 600 sono pompe sommergibili adatte al drenaggio e al sollevamento di acque di scarico chiare o grigie e acque pioyane in ambiti domestici e residenziali, acque moderatamente cariche con presenza di solidi fino a 25mm, adatte ad installazioni fisse o mobili. Ridisegnate in occasione dei quarant'anni di commercializzazione, con oltre 4.000.000 di pompe vendute, rendendola ancora più affidabile, resistente ed ergonomica. Disponibili nelle versioni automatiche con interruttore galleggiante integrato o nelle versioni manuali senza galleggiante. Possibilità di funzionamento a secco fino ad 1 minuto.

CARATTERISTICHE COSTRUTTIVE POMPA

Corpo pompa e griglia di aspirazione in tecnopolimero. Triplice tenuta ad anelli in bagno d'olio.


CARATTERISTICHE COSTRUTTIVE MOTORE

Motore sommergibile di tipo asincrono a servizio continuo. Statore inserito in un involucro ermetico in acciaio inossidabile e rotore montato su cuscinetti a sfera sovradimensionati. Protezione termica incorporata in tutte le versioni monofase. Motore in acciaio inossidabile AISI 304 e albero in acciaio AISI 431 per una maggiore resitenza agli attacchi corrosivi.

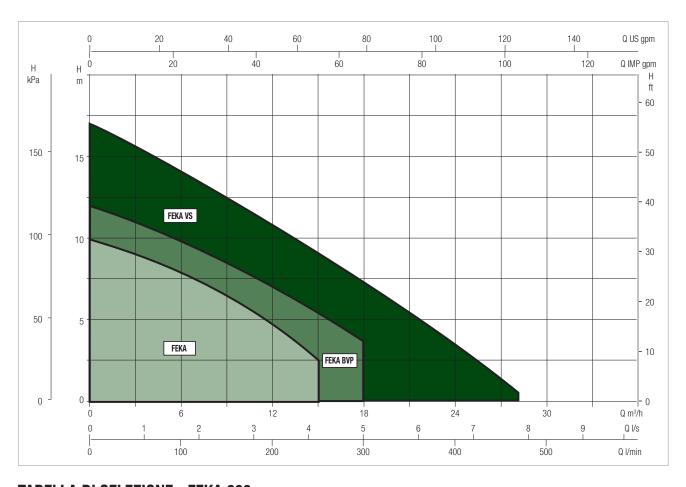


MATERIALI

N°	PARTICOLARI *		MATERIALI			
1	CORPO POMPA		TECNOPOLIMERO			
2	GIRANTE		TECNOPOLIMERO			
3	GUARNIZIONI OR		NBR			
4	MOTORF	CALOTTA	ACCIAIO INOSSIDABILE AISI 304 X5 CrNi 1810 - UNI 6900/71			
4	MOTORE	ALBERO ROTORE	ACCIAIO INOSSIDABILE AISI 431			
5	GRIGLIA DI ASPIRAZI	ONE	TECNOPOLIMERO			
6	GALLEGGIANTE		TECNOPOLIMERO			

DIMENSIONI MINIME DEI POZZETTI PER L'INSTALLAZIONE FISSA A FUNZIONAMENTO AUTOMATICO:

^{*} A contatto con il liquido

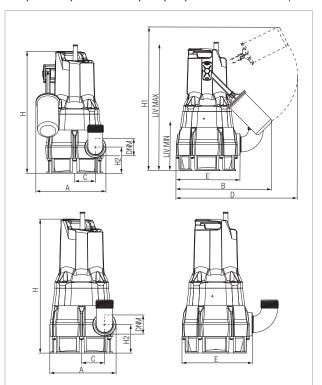

GAMMA FEKA

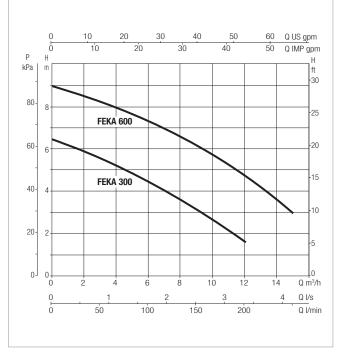
POMPE SOMMERGIBILI PER ACQUE REFLUE, CHIARE, GRIGIE E METEORICHE

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE - FEKA 600


MODELLO	Q=m³/h	0	3	6	9	12	15	18	24	30	36
	Q=I/min	0	50	100	150	200	250	300	400	500	600
FEKA 600 M-T	H (m)	7,45	6,45	5,7	4,95	4,1	2,8				

FEKA 300-600 - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE REFLUE AD USO DOMESTICO

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

MODELLO	Q= m³/h	0	3	6	9	12	15
IVIODELLO	Q=I/min	0	50	100	150	200	250
FEKA 300 MA - MNA	H (m)	6,4	5,5	4,4	3,1	1,6	
FEKA 600 MA-MNA-TNA	H (m)	8,9	8,2	7,2	6,1	4,7	2,9

	DATI ELETTRICI												
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NOI	MINALE	In	CONDEN	ENSATORE						
	50 Hz	kW	kW	HP	A	μF	Vc						
FEKA 300 MA - MNA	1X230 V~	0,35	0,22	0,30	1,9	8	450						
FEKA 600 MA-MNA	1X230 V~	0,68	0,5	0,67	3,1	10	450						
FEKA 600 TNA	3X400 V~	0,68	0,5	0,67	1,8	-	-						

A: Automatica con galleggiante - NA: Non automatica senza galleggiante

MODELLO			_		-		114	110	LIV.	LIV.	DNM	DIMEN	SIONI IN	IBALLO	041/0*	CAVO* VOLUME	
MODELLO	A	В	U	D	E	Н	H1	H2	MIN.	MAX.	GAS	L/A	L/B	Н	CAVO*	(mc)	Kg
FEKA 300 MA	189	255	56	296	174	329	355	71	95	305	1" 1/4	287	202	431	5m H05 10m H05	0,025	4,6
FEKA 300 MNA	163	-	56	-	174	329	-	71	-	-	1" 1/4	287	202	431	10m H05	0,025	4,6
FEKA 600 MA	189	255	56	296	174	349	443	71	190	390	1" 1/4	287	202	431	5m H05 10m H05	0,025	7
FEKA 600 MNA	163	-	56	-	174	349	-	71	-	-	1" 1/4	287	202	431	10m H05	0,025	7
FEKA 600 TNA	163	-	56	-	174	349	-	71	-	-	1" 1/4	287	202	431	10m H07	0,025	7

^{*}In conformità alla normativa europea EN 60335-2-41 per la pompa in utilizzo esterno è obbligatori il cavo di alimentazione di 10m.

FEKA BVP

POMPE SOMMERGIBILI PER ACQUE REFLUE

DATI TECNICI

Campo di funzionamento:

da 1 a 18 m³/h con prevalenze fino a 12 metri

Campo di temperatura del liquido:

da 0° C a +35°C.

Liquido pompato:

acque torbide con particelle solide di diametro massimo di 38mm.

Immersione massima: 7 metri.

Tempo massimo di funzionamento a secco: 1 minuto

Grado di protezione: IP 68. **Classe di isolamento:** F.

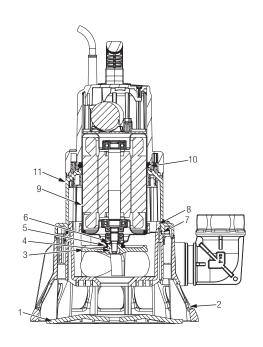
APPLICAZIONI

Potenti pompe sommergibili per applicazioni di drenaggio e svuotamento. Adatte per pompare acque sporche contenenti particelle solide di diametro massimo di 38mm. Anche in versione automatica provvista di interruttore galleggiante per l'avvio e l'arresto della pompa.

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Corpo pompa, girante anti-usura, calotta e griglia di aspirazione in tecnopolimero idroresistente. Materiali anti-corrosione e anti-ossidazione.

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

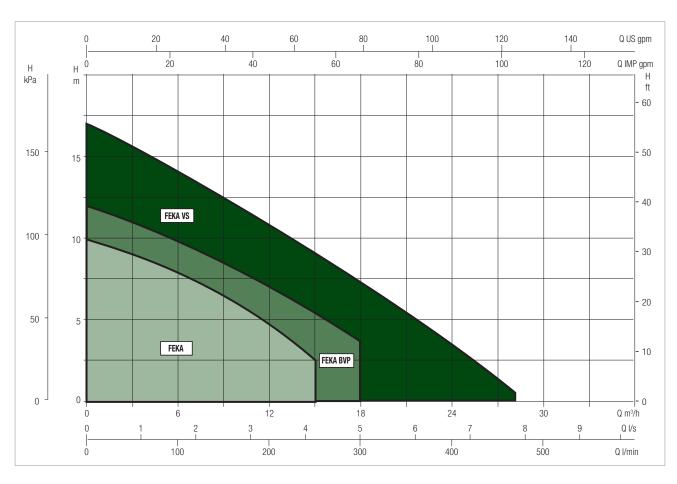

Di tipo sommergibile asincrono a servizio continuo.

Protezione termica anti-surriscaldamento.

Albero motore anti-usura.

N°	PARTICOLARI *		MATERIALI
1	FONDELLO		TECNOPOLIMERO
2	GALLEGGIANTE		TECNOPOLIMERO
3	GIRANTE		TECNOPOLIMERO
4	DADO		ACCIAIO INOX A2 DIN982-UNI7473
5	ANELLO V.RING		NBR
6	ROSETTA		ACCIAIO INOX A2
7	GUARNIZIONE OR		NBR
8	ANELLO MOTORE		TECNOPOLIMERO
		CALOTTA	ALLUMINIO
9	MOTORE	ALBERO ROTORE	ACCIAIO INOX AISI 416 UNI EN 10088-1 X12CRS13
10	GUARNIZIONE OR		NBR
11	CORPO		TECNOPOLIMERO

^{*} A contatto con il liquido

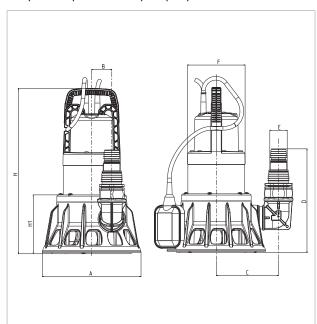

GAMMA FEKA

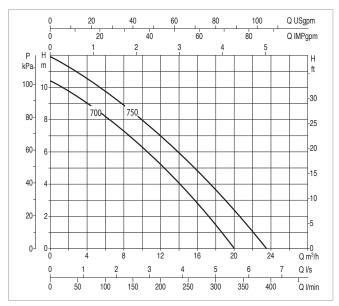
POMPE SOMMERGIBILI PER ACQUE REFLUE

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE - FEKA BVP


MODELLO	Q=m³/h	0	3	6	9	12	15	18	24	30	36
WIODELLO	Q=I/min	0	50	100	150	200	250	300	400	500	600
FEKA BVP 700 M	Н	10,5	9,5	8,1	7	5,1	4	1,5			
FEKA BVP 750 M	(M)	12	11	9,8	8,8	7	6	3,6			

FEKA BVP - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE REFLUE AD USO DOMESTICO

Campo di temperatura del liquido pompato: da 0°C a +35°C

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

			DATI ELETTRICI		
MODELLO	ALIMENTAZ.	P1 MAX	P2 NON	MINALE	In
	50 Hz	kW	kW	HP	A
FEKA BVP 700 M-A	1 x 230 V ~	1,0	0,70	0,95	4,6
FEKA BVP 750 M-A	1 x 230 V ~	1,1	0,75	1	5,6

MODELLO	٨	D	C	n	Е	Е	u	H H1 DNM						VOLUME	PES0
MODELLO	A	В	U	ט		Г	"	111	GAS	L/A	L/A L/B H	(mc)	Kg		
FEKA BVP 700 M-A	240	49	150	250	M40	140	400	142	1" ½	244	244	442	10 mt.	0,026	8
FEKA BVP 750 M-A	240	49	150	250	M40	140	400	142	1"1/2	244	244	442	10 mt.	0,026	8

DRENAG 1000, DRENAG 1200

POMPE SOMMERGIBILI PER ACQUE CHIARE E SABBIOSE DA CANTIERE

DATI TECNICI

Campo di funzionamento: da 3 a 28 m3/h con prevalenza fino a 17

metri

Liquido pompato: acqua piovana, acque freatiche, acque sabbiose di cantiere e acque bianche di scarico, comunque non aggressive.

Granulometria di passaggio: 10 mm Campo di temperatura del liquido:

- da a 0°C a +35°C per uso domestico (EN 60335-2-41)

- da 0°C a +50°C per altri impieghi.

Massima temperatura ambiente per funzionamento pompa a

motore emerso: +40°C

Massima profondità di immersione: 7 metri Grado di protezione del motore: IP 68

Classe di isolamento: F

Tensione di serie: 220-240V~ 50Hz Monofase 380-415V~ 50Hz Trifase

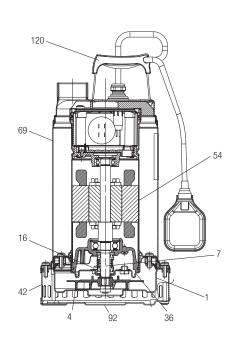
Installazione: fissa o portatile, verticale o orizzontale

APPLICAZIONI

Pompa centrifuga sommergibile in acciaio inossidabile con girante a rasamento in acciaio microfuso, idonea per il drenaggio di acque chiare di scarico, acque sabbiose, fangose e melmose, contenenti corpi solidi di dimensioni massime fino a 10 mm senza fibre, utilizzabile in applicazioni residenziali e siti di costruzione anche in caso di inondazioni inaspettate.

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

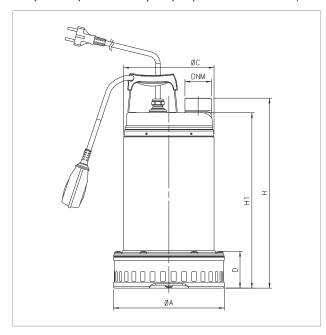
Corpo pompa, girante a rasamento microfusa, flangia motore, filtro e disco, cassa motore, cassa con maniglia e coperchio vano cablaggi in acciaio inossidabile AISI 304. Maniglia rivestita in gomma isolante. Albero motore in acciaio inossidabile AISI 316. Tenuta meccanica doppia con camera d'olio interposta (olio atossico), in carbone-allumina lato motore e carburo di silicio-carburo di silicio lato pompa.

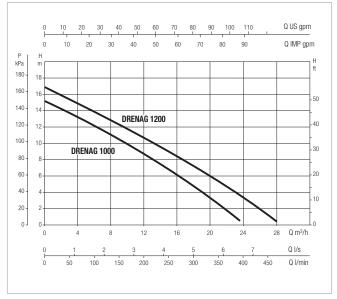

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Motore a secco, di tipo asincrono, stagno, raffreddato dal liquido pompato. Rotore montato su cuscinetti a sfere stagni ingrassati a vita, maggiorati e selezionati per garantire silenziosità e durata. Protezione termo-amperometrica di serie e condensatore permanentemente inserito nella versione monofase. La versione monofase può essere fornita con galleggiante per il funzionamento in automatico. Cavo di alimentazione: 10 metri H07RN-F, con spina UNEL 47166-68 per la versione Monofase.

Numero di poli: 2 Max avviamenti/ora: 20

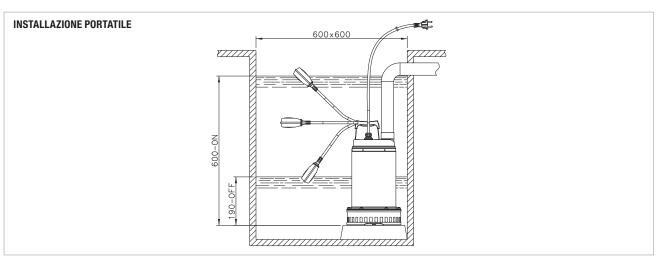
N°	PARTICOLARI *		MATERIALI					
1	CORPO POMPA		ACCIAIO INOSSIDABILE AISI 304					
4	GIRANTE		X5CrNi 1810 - UNI 6900/71					
7	ALBERO MOTORE		ACCIAIO INOSSIDABILE MICROFUSO AISI 316 X5CrNiMo 1712 - UNI 6900/71					
16	TENUTA MECCANICA	LATO POMPA	CARBURO DI SILICIO / CARBURO DI SILICIO					
10	TENUTA WEGGANIGA	LATO MOTORE	CARBONE / ALLUMINA					
36	COPERCHIO PORTATENU	JTA						
42	FILTRO							
54	CASSA MOTORE		ACCIAIO INOSSIDABILE AISI 304 X5CrNi 1810 - UNI 6900/71					
69	CAMICIA POMPA							
92	COPERCHIO FILTRO							
120	MANIGLIA		ACCIAIO INOSSIDABILE AISI 304 X5CrNi 1810 - UNI 6900/7 RIVESTITO IN GOMMA ISOLANTE					


^{*} A contatto con il liquido



DRENAG 1000 - 1200 - POMPE SOMMERGIBILI PER DRENAGGIO ACQUE CHIARE E SABBIOSE DA CANTIERE

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico - da 0°C a +50°C per altri impieghi



Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

MODELLO	Q=m³/h	0	3	6	9	12	15	18	24	30	36	42	48	54	60	66
WIODELLO	Q=I/min	0	50	100	150	200	250	300	400	500	600	700	800	900	1000	1100
DRENAG 1000 M-T	Н	15,3	13,7	12,1	10,5	8,7	6,8	4,7								
DRENAG 1200 M-T	(m)	17	15,4	13,8	12,4	10,7	9	7,3	3,3							

	DATI ELETTRICI												
MODELLO	ALIMENTAZ.	P1 MAX	P2 NOI	MINALE	In	CONDENSATORE							
	50 Hz	W	kW	HP	А	μF	Vc						
DRENAG 1000 M	1 x 220 V -240 V ~	1,29	1	1,36	6	25	450						
DRENAG 1000 T	3 x 400 V ~	1,18	1	1,36	2,43	-	-						
DRENAG 1200 M	1 x 220 V -240 V ~	1,85	1,2	1,6	7,5	30	450						
DRENAG 1200 T	3 x 400 V ~	1,65	1,2	1,6	3,24	-	-						

MODELLO	Ø A	Ø C	D H		н н1		DIM	ENSIONI IMBA	VOLUME	PES0	
WIODELLO	VA	שע	ט	П	п пі	DNM	L/A	L/B	Н	(mc)	Kg
DRENAG 1000	215	175	71	413	385	1 ½" F	240	600	250	0,034	17
DRENAG 1200	215	175	71	413	385	1 ½" F	240	600	250	0,034	18,5

FEKA VS

POMPE SOMMERGIBILI PER ACQUE REFLUE

DATI TECNICI

Campo di funzionamento:

da 0 a 32 m³/h con prevalenza fino a 14 metri.

Liquido pompato: acque luride e acque usate in genere, comunque non

aggressive.

Passaggio libero: 50 mm

Campo di temperatura del liquido:

- da 0°C a +35°C per uso domestico (EN 60335-2-41)

- da 0°C a +50°C per altri impieghi

Massima temperatura ambiente per funzionamento della pompa a

motore emerso: +40°C

Massima profondità di immersione: 7 metri Grado di protezione del motore: IP 68

Classe di isolamento: F

Tensione di serie: $220\text{-}240\text{V}\sim50\text{Hz}$ Monofase

380-415V~ 50Hz Trifase

Cavo di alimentazione:

10 metri H07RN-F, con spina per la versione monofase

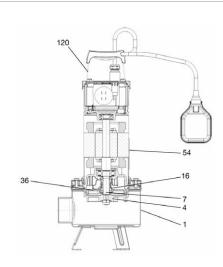
Installazione: fissa o portatile, verticale

APPLICAZIONI

Pompa centrifuga sommergibile in acciaio inossidabile con girante a vortice liquido, in acciaio microfuso, idonea per il sollevamento di acque luride e acque di scarico in generale, contenenti corpi solidi di dimensioni massime fino a 50 mm.

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Corpo pompa, coperchio portatenuta, cassa motore, calotta con maniglia in acciaio inossidabile AISI 304. Girante in acciaio microfuso. Maniglia rivestita in gomma isolante. Albero motore in acciaio inossidabile AISI 316. Tenuta meccanica doppia con camera d'olio interposta (olio atossico), in carbone/allumina lato motore e carburo di silicio/carburo di silicio lato pompa.

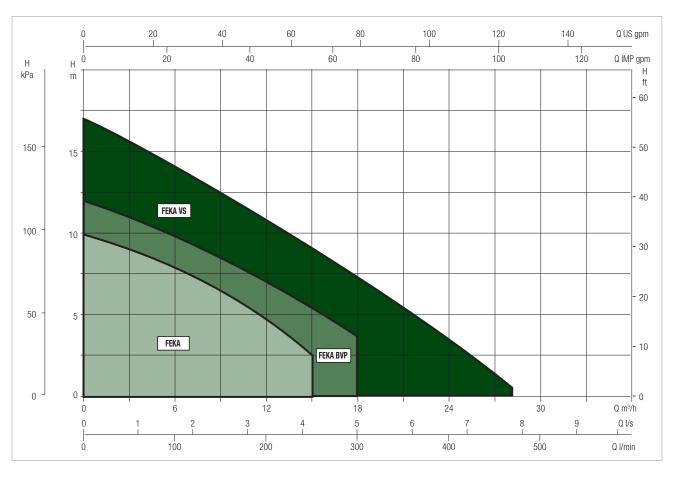

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Motore a secco, di tipo asincrono, stagno, raffreddato dal liquido pompato. Rotore montato su cuscinetti a sfere ingrassati a vita, maggiorati e selezionati per garantire silenziosità e durata. Protezione termo-amperometrica di serie per la versione monofase, a cura dell'utente per la versione trifase. Condensatore permanentemente inserito nella versione monofase. Servizio continuo con liquido a 35 °C e pompa totalmente immersa. Le versione monofase può essere fornita con galleggiante per il funzionamento in automatico. Cavo di alimentazione: 10 metri H07RN-F, con spina per la versione monofase.

Numero di poli: 2 Max avviamenti/ora: 20

N°	PARTICOLARI *		MATERIALI
1	CORPO POMPA		ACCIAIO INOSSIDABILE AISI 304
4	GIRANTE FEKA VS		ACCIAIO MICROFUSO AISI 304
7	ALBERO MOTORE		ACCIAIO IOSSIDABILE AISI 316
10	TENUITA MECCANICA	LATO POMPA	CARBURO DI SILICIO / CARBURO DI SILICIO
16	TENUTA MECCANICA	LATO MOTORE	CARBONE / ALLUMINA
36	COPERCHIO PORTATENU	JTA	ACCIAIO INOSSIDABILE AISI 304
54	CASSA MOTORE		ACCIAIO INOSSIDABILE AISI 304
120	MANIGLIA		ACCIAIO INOSSIDABILE AISI 304 RIVESTITA IN GOMMA ISOLANTE

^{*} A contatto con il liquido

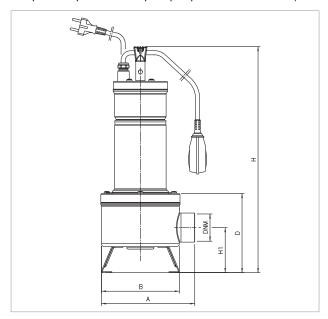

GAMMA FEKA

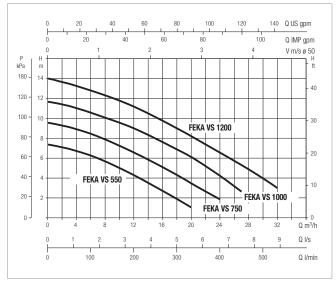
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

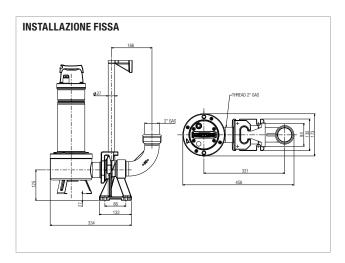
TABELLA GRAFICA DI SELEZIONE

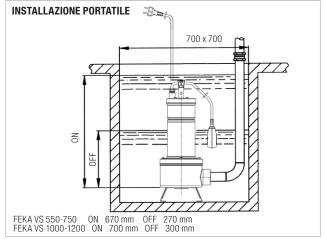

TABELLA DI SELEZIONE - FEKA VS


MODELLO	Q=m³/h	0	3	6	9	12	15	18	24	30	36
MODELLO	Q=I/min	0	50	100	150	200	250	300	400	500	600
FEKA VS 550 M-T		7,4	6,9	6,2	5,6	4,1	3,2	1,8			
FEKA VS 750 M-T	Н	9,6	9,2	8,5	7,6	6,7	5,6	4,3	1,9		
FEKA VS 1000 M-T	(m)	11,8	11,3	10,5	9,8	9	8	6,8	4,1		
FEKA VS 1200 M-T		14	13,4	12,8	12	11,2	10,1	9	6,7	4	

FEKA VS - POMPE SOMMERGIBILI PER SOLLEVAMENTO ACQUE REFLUE

Campo di temperatura del liquido pompato: da 0°C a +35°C per uso domestico (EN 60335-2-41) - da 0°C a +50°C per altri impieghi





Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

				DATI EL	ETTRICI			
MODELLO	ALIMENTAZ.	P1 MAX	P2 NOI	MINALE	In	lst	CONDEN	ISATORE
	50 Hz	kW	kW	HP	A	Α	μF	Vc
FEKA VS 550 M-NA	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2	20	20	450
FEKA VS 550 M-A	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2	20	20	450
FEKA VS 550 T-NA	3 x 400 V ~	0,90	0,55	0,75	1,64	11	-	-
FEKA VS 750 M-NA	1 x 220 V -240 V ~	1,11	0,75	1	5,13	20	20	450
FEKA VS 750 M-A	1 x 220 V -240 V ~	1,11	0,75	1	5,13	20	20	450
FEKA VS 750 T-NA	3 x 400 V ~	1,02	0,75	1	1,94	11	-	-
FEKA VS 1000 M-NA	1 x 220 V -240 V ~	1,46	1	1,36	6,63	31	25	450
FEKA VS 1000 M-A	1 x 220 V -240 V ~	1,46	1	1,36	6,63	31	25	450
FEKA VS 1000 T-NA	3 x 400 V ~	1,37	1	1,36	2,51	16	-	-
FEKA VS 1200 M-NA	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63	38	30	450
FEKA VS 1200 M-A	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63	38	30	450
FEKA VS 1200 T-NA	3 x 400 V ~	1,86	1,2	1,6	3,44	22	-	-

MODELLO	۸	D	n	Ш	H1	Ø	DIM	ENSIONI IMBA	VOLUME	PES0	
MIODELLO	A	D	U	П	""	DNM	L/A	L/B	Н	(mc)	Kg
FEKA VS 550	203	170	172	492	98	2" F	240	600	240	0,034	13,7
FEKA VS 750	203	170	172	492	98	2" F	240	600	240	0,034	13,8
FEKA VS 1000	203	170	172	492	98	2" F	240	600	240	0,034	15,5
FEKA VS 1200	203	170	172	492	98	2" F	240	600	240	0,034	17,1

FEKA VS GRINDER

POMPE SOMMERGIBILI

DATI TECNICI

Campo di funzionamento: da 0 a 14,4 m³/h con prevalenze fino a 25

metr

Tipo di liquido pompato: acque cariche e acque usate in genere, non

aggressive

Passaggio libero: n/a

Temperatura del liquido: da 0°C a +40°C per uso domestico

Connessione di mandata: filetto 1" 1/2 GAS

Flangia DN 32 e DN 40

Direzione di mandata: orizzontale e verticale con accessorio kit curva

Girante: aperta in ghisa, con trituratore **Grado di protezione del motore:** IP 68

Classificazione termica dell'isolamento del motore: F

Tipo di cavo di alimentazione: H07RN8-F

Tipo di installazione possibile: fissa o mobile in posizione verticale

Immersione massima: 7 metri

Pompa sommergibile per il drenaggio di acque cariche provenienti da scarichi in ambiti civili e commerciali. La pompa è certificata per la norma dell'Unione Europea EN 12050-1 che si applica agli impianti di sollevamento di acque reflue contenenti materiale fecale in edifici e cantieri. Grazie al trituratore la pompa è adatta ad impianti con tubazioni di piccolo diametro o che richiedono elevate pressioni. Pompa adatta ad installazioni fisse con dispositivo di accoppiamento o mobile se appoggiata direttamente sul fondo della vasca. Costruzione secondo normative CEI 2-3CEI 61-69 (EN 60335-2-41). Versioni monofase disponibile nella versione automatica con l'interruttore galleggiante integrato o nella versione manuale senza galleggiante.

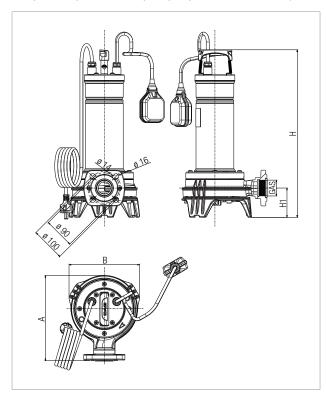
CARATTERISTICHE COSTRUTTIVE POMPA

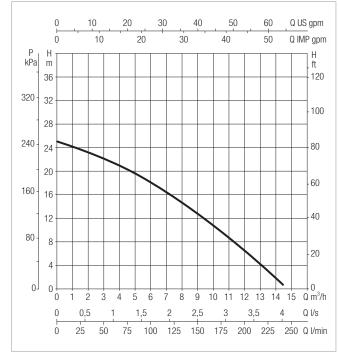
L'albero motore è in acciaio inossidabile AISI 316. Tenuta meccanica doppia con camera d'olio interposta (olio atossico) in carbone/allumina lato motore e carburo di silicio/carburo di silicio lato pompa. Coperchio portatenuta, cassa motore, calotta e maniglia sono in acciaio inossidabile. Il corpo pompa e la base sono in ghisa. Il sistema di triturazione è in acciaio inossidabile AISI 630. La maniglia è rivestita in gomma isolante.

CARATTERISTICHE COSTRUTTIVE MOTORE

Motore a secco, di tipo asincrono, stagno, raffreddato dal liquido pompato. Il rotore è montato su cuscinetti a sfere ingrassati a vita, maggiorati e selezionati per garantire silenziosità e durata. Protezione termo-amperometrica di serie per la versione monofase con condensatore inserito di serie, la versione trifase ha una protezione termica che può essere collegata ad un quadro di controllo.

N°	PARTICOLARI *		MATERIALI
1	CORPO POMPA		GHISA
2	BASE		GHISA
3	GIRANTE		GHISA
4	BASE TRITURATORE		ACCIAIO INOSSIDABILE
5	TRITURATORE		ACCIAIO INOSSIDABILE
6	DISCO DI TENUTA DELL'	ALBERO	ACCIAIO INOSSIDABILE
7	FLANGIA DI CONNESSIO	NE DEL MOTORE	ACCIAIO INOSSIDABILE
8	SUPPORTO CUSCINETT	O INFERIORE	ALLUMINIO
	DOPPIA TENUTA	LATO POMPA	SIC/SIC
9	MECCANICA	LATO MOTORE	CARBONE/CERAMICA
10	CASSA MOTORE		ACCIAIO INOSSIDABILE
11	ALBERO MOTORE		ACCIAIO INOSSIDABILE
12	SUPPORTO CUSCINETT	O SUPERIORE	ALLUMINIO
13	COLLEGAMENTO COPE	RCHIO	ACCIAIO INOSSIDABILE
14	MANIGLIA		ACCIAIO INOSSIDABILE RIVESTITA IN GOMMA ISOLANTE
15	CAVO DI ALIMENTAZION	IE	H07RN8-F
16	CAVO GALLEGGIANTE		H07RN-F
17	0-RINGS		NBR
18	PASSACAVO		OTTONE PLACCATO AL NICKEL


¹¹ 10 6 1 1 10 8 7



^{*} A contatto con il liquido

FEKA VS GRINDER - POMPE SOMMERGIBILI CON TRITURATORE PER ACQUE CARICHE

Campo di temperatura del liquido pompato: da 0°C a +40°C per uso domestico

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

PRESTAZIONI A 50 Hz

	DATI IDRAULICI													
MODELLO	Q=m³/h	0	2	4	6	8	9	10	11	12	14			
	Q=I/min	0	34	66	100	135	150	168	180	200	240			
FEKA VS GRINDER 1000 MA		25	23	21	18	14,5	12,8	10,5	9	6,5	0,67			
FEKA VS GRINDER 1000 M-NA	H (mt)	25	23	21	18	14,5	12,8	10,5	9	6,5	0,67			
FEKA VS GRINDER 1000 TNA		25	23	21	18	14,5	12,8	10,5	9	6,5	0,67			

DATI ELETTRICI

		DATI ELETTRICI														
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NO	VINALE	ln	lst	CONDENSATORE									
	50 Hz	W	kW	HP	A	A	μF	Vc								
FEKA VS GRINDER 1000 MA	220 x 240V	1,3	1	1,3	6,4 A	29.9	35	450								
FEKA VS GRINDER 1000 M-NA	220 x 240V	1,3	1	1,3	6,2 A	29.9	35	450								
FEKA VS GRINDER 1000 TNA	380 x 415V	1,3	1	1,3	3 A	19.8	-	-								

DATI DIMENSIONALI

	MODELLO	٨	D	ш	H1	GAS	DN1	FORI	DIMENSIONI IMBALLO			VOLUME	PES0
		АВП	11	111	UAS	DIVI	runi	L/A	L/B	Н	(mc)	Kg	
	FEKA VS GRINDER 1000	253	209	496	87	Rp 1" 1/2	DN32 PN10 / 6 DN40 PN6	4 2	290	230	560	0,037	23

FEKA FX V

POMPE SOMMERGIBILI

DATI TECNICI

Portata massima: 62,8 m³/h **Prevalenza:** 19.6 m

Massima profondità di immersione: 20 m

Tipo di liquido pompato: acque cariche con corpi filamentosi, materiale cartaceo o tessile in presenza di reflue di origine domestica o civile **Temperatura min. e max. del liquido:** + 50°C (+ 60°C per brevi

periodi)

Flangiatura o filettatura di mandata e aspirazione: da 2"-DN50 a

DN65

Tipo girante/i: vortex

Numero massimo di avviamenti l'ora: 20/h Grado di protezione del motore: IP 68

Classificazione termica dell'isolamento del motore: F

Alimentazione Monofase: 1x 220-240V 50Hz

Alimentazione Trifase: 3x 400V 50Hz / 3x 230V 50Hz su richiesta

Tempo massimo di funzionamento a secco: 10 min Lunghezza cavo di alimentazione e tipo di spina: 10 m

H07RN8-F, per monofase; 07RN8-F, per trifase.

Tipo di installazione possibile: mobile appoggiata a terra o fissa su

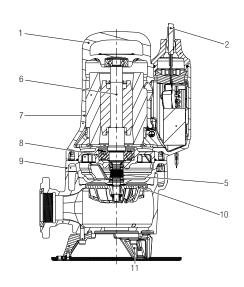
dispositivo di accoppiamento

Certificazioni \ Omologazioni: EN 12050-1 \ ATEX

Versioni speciali disponibili a richiesta: lunghezze del cavo diverse,

tensioni e frequenze diverse

FEKA FX V è una pompa sommergibile per il drenaggio di acque cariche provenienti da scarichi in ambiti civili e commerciali. Certificata secondo la normativa per le acque di scarico EN 12050-1. Pompa adatta ad installazioni fisse con dispositivo di accoppiamento o mobile se appoggiata direttamente sul fondo della vasca. Grazie alla girante super vortex ad alto rendimento con passaggio libero integrale la pompa è adatta a liquido carico con solidi e fibre lunghe in sospensione. Gli ingombri ridotti e le bocche di mandata sia flangiate che filettate la rendono ideale per le sostituzioni. Progettata per una veloce manutenzione grazie ad una soluzione costruttiva che prevede un facile accesso alle componenti principali della pompa. Versioni automatiche con potenze fino a 1,5 kW. Disponibile versione ATEX per l'utilizzo in ambienti potenzialmente esplosivi. (certificazioni ATEX: Il2G Ex db k IIB T4 o IEC EX: Ex db IIB T4 Gb).

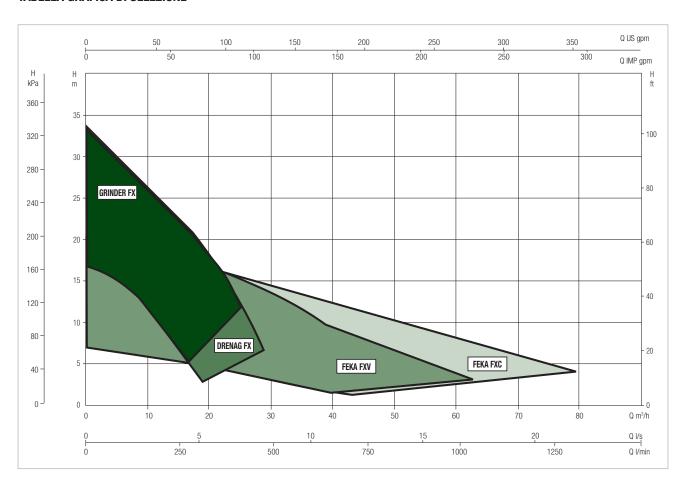

CARATTERISTICHE COSTRUTTIVE POMPA

Corpo pompa e girante in ghisa. Albero motore in acciaio inossidabile AISI 304. Doppia tenuta meccanica in SiC-SiC/SIC-C in camera d'olio non a contatto con il liquido pompato, indipendente dal senso di rotazione. Bocca di mandata sia flangiata che filettata.

CARATTERISTICHE COSTRUTTIVE MOTORE

Motore asincrono monofase (versioni MA/MNA) e trifase (versioni TNA). Rotore montato su cuscinetti lubrificati e stagni a lunga durata. Funzionamento continuo in S1 con motore completamente immerso. Funzionamento a secco per un tempo massimo di 10 minuti. Sensori di sovra-temperatura negli avvolgimenti del motore con soglia di intervento a 130°C. Pressacavo resinato, cavo di alimentazione 07RN8-F con connessione rapida. Versioni monofase con condensatore integrato, disponibili con galleggiante per il funzionamento automatico (MA) con potenze fino a 1,5 kW. Nei motori trifase la connessione della protezione termica integrata è a cura dell'installatore.

N°	PARTICOLARI	MATERIALI
1	MANIGLIA	GHISA EN GJL 200
2	CAVO ELETTRICO	07RN8-F
3	VITERIA	ACCIAIO AISI 304
4	OR	NBR
5	TENUTA MECC. COMP. LATO POMPA	SiC-SiC/SiC-C
) 3	TENUTA MECC. COMP. LATO MOTORE	SiC/CARBON
6	ALBERO MOTORE	ACCIAIO AISI 304 (P2>1.5kW e 4 poli) AISI 431 (P2<1.2kW)
7	CORPO POMPA / MOTORE	GHISA EN GJL 200
8	FLANGIA CUSCINETTO INTERNA	LEGA DI ALLUMINIO EN AC 46100
9	FLANGIA	GHISA EN GJL 200
10	GIRANTE	GHISA EN GJL 250
11	BASE	GHISA EN GJL 200
13	VERNICIATURA	CATAFORESI e ACRILICA BICOMPONENTE 50µm

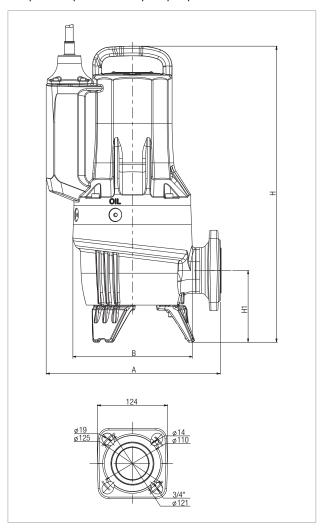

GAMMA FX

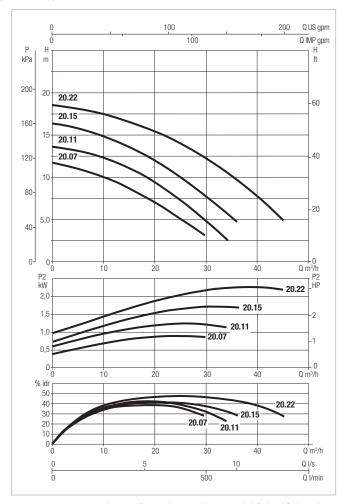
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE FEKA FX V 20 - 25


MODELLO	Q=m³/h	0	6	12	18	24	30	36	42	48	54
MODELLO	Q=I/min	0	100	200	300	400	500	600	700	800	900
FEKA FXV 20.07		11,7	10,9	9,6	7,7	5,4	2,9				
FEKA FXV 20.11		13,1	12,9	11,9	10,1	7,7	4,8				
FEKA FXV 20.15		16,2	15,6	14,4	12,6	10,4	7,7	4,7			
FEKA FXV 20.22		18,5	18,0	17,1	15,9	14,3	12,2	9,7	6,6		
FEKA FXV 25.07	Н	8,8	8,1	7,0	5,7	4,3	3,0	1,8			
FEKA FXV 25.11	(m)	11,3	10,7	9,6	8,2	6,6	4,9	3,4	2,2		
FEKA FXV 25.15		13,7	13,4	12,4	11,0	9,2	7,4	5,5	3,9	2,5	
FEKA FXV 25.22		16,5	16,3	15,6	14,5	13,0	11,3	9,4	7,5	5,6	3,8
FEKA FXV 25.07.4		6,3	6,0	5,5	4,8	3,9	2,9	1,8			
FEKA FXV 25.12.4		9,0	8,7	8,3	7,8	7,1	6,3	5,4	4,3	3,2	1,9

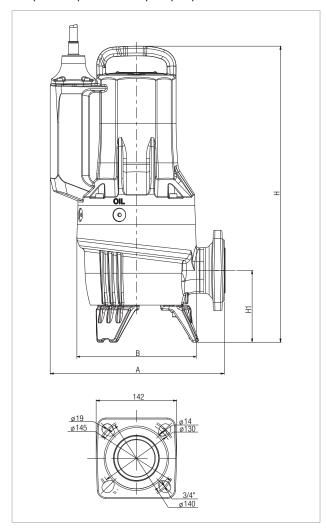
FEKA FX V 20 - POMPE SOMMERGIBILI

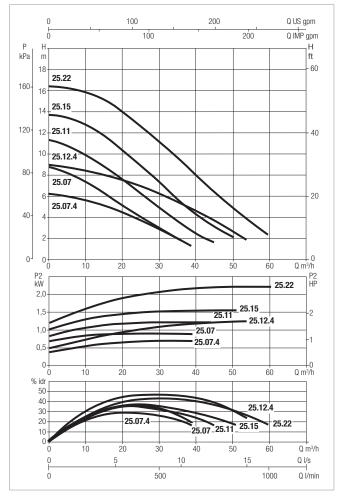
Campo di temperatura del liquido pompato: da 0° a +50°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1~\text{mm}^2/\text{s}$ e densità pari a $1000~\text{kg/m}^3$. Tolleranza delle curve secondo ISO9906.

				DA	TI ELETTRICI			
MODELLO	ALIMENTAZIONE 50 Hz	P1 MAX kW	P2 NOI Kw	MINALE HP	In A	Is A	CONDENSATORE µF	VELOCITÀ NOM. giri/min
	30 112		NW	пг			μι	NOW. GILL/IIIII
FEKA FXV 20.07 MA	1x230V	1,4	0,9	1,2	6,4	29	25	2870
FEKA FXV 20.07 MNA*	1x230V	1,4	0,9	1,2	6,4	29	25	2870
FEKA FXV 20.07 TNA*	3x400V	1,4	0,9	1,2	2,4	22	-	2870
FEKA FXV 20.11 MA	1x230V	1,7	1,2	1,6	8	29	25	2870
FEKA FXV 20.11 MNA*	1x230V	1,7	1,2	1,6	8	29	25	2870
FEKA FXV 20.11 TNA*	3x400V	1,6	1,2	1,6	2,9	19	=	2870
FEKA FXV 20.15 MA	1x230V	2,3	1,7	2,3	10,5	36	40	2870
FEKA FXV 20.15 MNA*	1x230V	2,3	1,7	2,3	10,5	36	40	2870
FEKA FXV 20.15 TNA*	3x400V	2,2	1,7	2,3	4	25	-	2870
FEKA FXV 20.22 TNA*	3x400V	2,9	2,2	2,9	5	35	-	2870

^{*}Disponibile in versione Atex


MODELLO	PASSAGGIO	٨	D	В	H1		DIMEI	PES0						
INIODELLO	LIBER0	A	D		Ex	пі	GAS	DN1	FORI	D	L/A	L/B	Н	Kg
FEKA FXV 20.07*	50	307	211	464	464	104	Rp 2"	50 PN10/6	4	125-110	660	370	400	35
FEKA FXV 20.11*	50	307	211	464	482	104	Rp 2"	50 PN10/6	4	125-110	660	370	400	35
FEKA FXV 20.15 MA	50	307	211	464	-	104	Rp 2"	50 PN10/6	4	125-110	660	370	400	39
FEKA FXV 20.15 MNA-TNA*	50	307	211	474	492	104	Rp 2"	50 PN10/6	4	125-110	660	370	400	39
FEKA FXV 20.22*	50	307	211	492	508	104	Rp 2"	50 PN10/6	4	125-110	660	370	400	40


^{*}Disponibile in versione Atex

FEKA FX V 25 - POMPE SOMMERGIBILI

Campo di temperatura del liquido pompato: da 0° a +50°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

				DA	TI ELETTRICI			
MODELLO	ALIMENTAZIONE 50 Hz	P1 MAX kW	P2 NOI Kw	MINALE HP	- In A	Is A	CONDENSATORE µF	VELOCITÀ NOM. giri/min
FEKA FXV 25.07.4 TNA*	3x400V	1	0,7	0,9	2,2	10	-	1435
FEKA FXV 25.12.4 TNA*	3x400V	1,7	1,2	1,6	3	15	-	1435
FEKA FXV 25.07 MA	1x230V	1,5	1	1,3	6,6	29	25	2870
FEKA FXV 25.07 MNA*	1x230V	1,5	1	1,3	6,6	29	25	2870
FEKA FXV 25.07 TNA*	3x400V	1,3	1	1,3	2,3	22	-	2870
FEKA FXV 25.11 MA	1x230V	1,7	1,2	1,6	7,6	29	25	2870
FEKA FXV 25.11 MNA*	1x230V	1,7	1,2	1,6	7,6	29	25	2870
FEKA FXV 25.11 TNA*	3x400V	1,7	1,2	1,6	3	19	-	2870
FEKA FXV 25.15 MA	1x230V	2,3	1,7	2,3	10,6	36	40	2870
FEKA FXV 25.15 MNA*	1x230V	2,3	1,7	2,3	10,6	36	40	2870
FEKA FXV 25.15 TNA*	3x400V	2,2	1,7	2,3	4	25	-	2870
FEKA FXV 25.22 TNA*	3x400V	2,8	2,2	2,9	4,9	35	-	2870

^{*}Disponibile in versione Atex

MODELLO	PASSAGGIO	Λ	В	Н		H1			DIMEI	NSIONI IMI	PES0			
MODELLO	LIBER0	A	D		Ex	""	GAS	DN1	FORI	D	L/A	L/B	Н	Kg
FEKA FXV 25.07*	65	307	211	502	519	124	-	65 PN10/6	4	145-130	660	370	400	36
FEKA FXV 25.11*	65	307	211	502	519	124	-	65 PN10/6	4	145-130	660	370	400	37
FEKA FXV 25.15*	65	307	211	522	539	127	-	65 PN10/6	4	145-130	660	370	400	43
FEKA FXV 25.22*	65	307	211	522	539	127	-	65 PN10/6	4	145-130	660	370	400	41
FEKA FXV 25.07.4*	65	335	253	545	545	132	-	65 PN10/6	4	145-130	660	370	400	45
FEKA FXV 25.12.4*	65	335	253	545	545	132	-	65 PN10/6	4	145-130	660	370	400	48

^{*}Disponibile in versione Atex

FEKA FX C

POMPE SOMMERGIBILI

DATI TECNICI

Portata massima: 78,9 m³/h **Prevalenza:** 20.9 m

Massima profondità di immersione: 20 m

Tipo di liquido pompato: acque di scarico, chiare, acque grigie, acque

meteoriche e acque sabbiose di cantiere

Temperatura min. e max. del liquido: +50°C (+60°C per brevi

periodi)

Flangiatura o filettatura di mandata e aspirazione: da 2"-DN50 a

DN65

Tipo girante: canale alta efficienza

Numero massimo di avviamenti l'ora: 20/h Grado di protezione del motore: IP 68

Classificazione termica dell'isolamento del motore: F

Alimentazione Monofase: 1x 220-240V 50Hz

Alimentazione Trifase: 3x 400V 50Hz / 3x 230V 50Hz su richiesta

Tempo massimo di funzionamento a secco: 10 min Lunghezza cavo di alimentazione e tipo di spina: 10 m

H07RN8-F, per monofase; 07RN8-F, per trifase.

Tipo di installazione possibile: mobile appoggiata a terra o fissa su

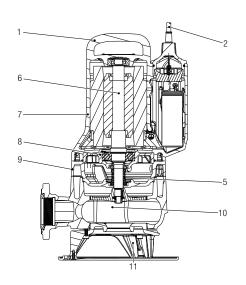
dispositivo di accoppiamento

Certificazioni \ Omologazioni: EN 12050 \ ATEX

Versioni speciali disponibili a richiesta: lunghezze del cavo diverse,

tensioni e frequenze diverse

FEKA FX C è una pompa sommergibile per il drenaggio di acque cariche provenienti dagli scarichi in ambiti civili e commerciali. La pompa è certificata secondo la normativa per le acque di scarico EN 12050-2. Pompa adatta ad installazioni fisse con dispositivo di accoppiamento o mobile se appoggiata direttamente sul fondo della vasca. Adatta a reflui e acque cariche senza fibre lunghe, acqua piovana e acqua di falda. Pompa adatta al drenaggio di ambienti soggetti ad allagamenti, quando sono richieste elevate portate. Progettata per una veloce manutenzione grazie ad una soluzione costruttiva che prevede un facile accesso alle componenti principali. Certificata secondo la normativa per le acque di scarico EN 12050-1. Versioni automatiche con potenze fino a 1,5 kW. Disponibile versione ATEX per l'utilizzo in ambienti potenzialmente esplosivi. (certificazioni ATEX: II2G Ex db k IIB T4 o IEC EX: Ex db IIB T4 Gb).

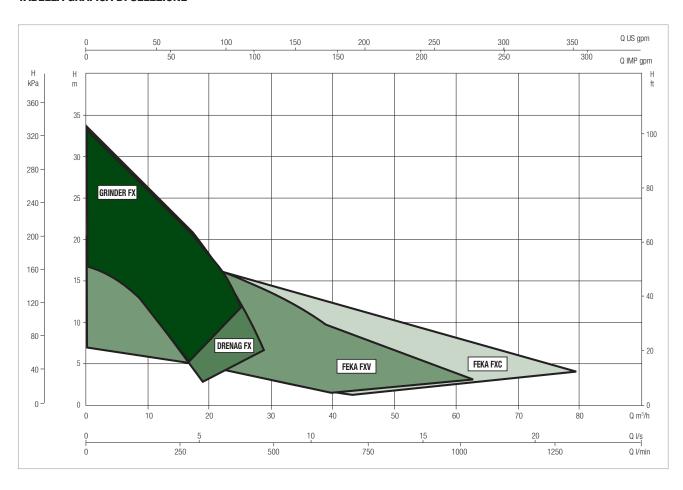

CARATTERISTICHE COSTRUTTIVE POMPA

Girante a canali con sistema antibloccaggio, passaggio libero di 50 mm. Corpo pompa e girante in ghisa. Albero motore in acciaio inossidabile AISI 304. Doppia tenuta meccanica in SiC-SiC/SiC-C in camera d'olio non a contatto con il liquido pompato. Bocca di mandata sia flangiata che filettata.

CARATTERISTICHE COSTRUTTIVE MOTORE

Motore asincrono monofase (versioni MA/MNA) e trifase (versioni TNA). Rotore montato su cuscinetti lubrificati e stagni a lunga durata. Funzionamento continuo in S1 con motore completamente immerso. Funzionamento a secco per un tempo massimo di 10 minuti. Sensori di sovra-temperatura negli avvolgimenti del motore con soglia di intervento a 130°C. Pressacavo resinato, cavo di alimentazione 07RN8-F con connessione rapida. Versioni monofase con condensatore integrato, disponibili con galleggiante per il funzionamento automatico (versione MA) con potenze fino a 1,5 kW. Nei motori trifase la connessione della protezione termica integrata è a cura dell'installatore.

N°	PARTICOLARI	MATERIALI
1	MANIGLIA	GHISA EN GJL 200
2	CAVO ELETTRICO	07RN8-F
3	VITERIA	ACCIAIO AISI 304
4	OR	NBR
5	TENUTA MECC. COMP. LATO POMPA	SiC-SiC/SiC-C
5	TENUTA MECC. COMP. LATO MOTORE	SiC/CARBON
6	ALBERO MOTORE	ACCIAIO AISI 304 (P2>1.5kW) AISI 431 (P2<1.2kW)
7	CORPO POMPA / MOTORE	GHISA EN GJL 200
8	FLANGIA CUSCINETTO INTERNA	LEGA DI ALLUMINIO EN AC 46100
9	FLANGIA	GHISA EN GJL 200
10	GIRANTE	GHISA EN GJL 250
11	BASE	GHISA EN GJL 200
13	VERNICIATURA	CATAFORESI e ACRILICA BICOMPONENTE 50µm

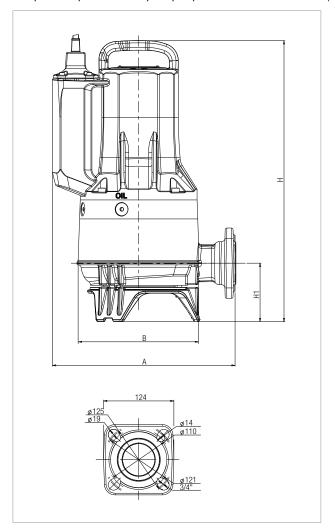

GAMMA FX

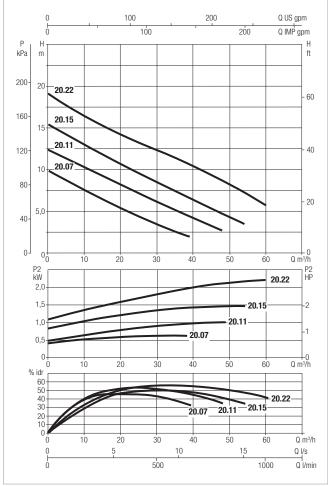
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m². Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE FEKA FX C 20 - 25


MODELLO	Q=m³/h	0	7	14	22	29	36	43	50	58	65
MODELLO	Q=I/min	0	120	240	360	480	600	720	840	960	1080
FEKA FXC 20.07		9,8	8,3	6,7	5,1	3,6	2,4				
FEKA FXC 20.11		12,4	10,8	9,3	7,8	6,4	5,0	3,6			
FEKA FXC 20.15		15,3	13,5	11,8	10,2	8,7	7,1	5,7	4,2		
FEKA FXC 20.22	Н	19,1	17,2	15,5	14,0	12,6	11,2	9,8	8,1	6,2	
FEKA FXC 25.07	(m)	9,4	7,8	6,2	4,6	3,3	2,2	1,4			
FEKA FXC 25.11		11,9	10,3	8,8	7,4	6,0	4,8	3,5	2,4		
FEKA FXC 25.15		15,1	13,5	11,8	10,3	8,8	7,3	5,8	4,5	3,1	
FEKA FXC 25.22		18,9	16,9	15,2	13,8	12,4	11,1	9,8	8,4	6,9	5,1

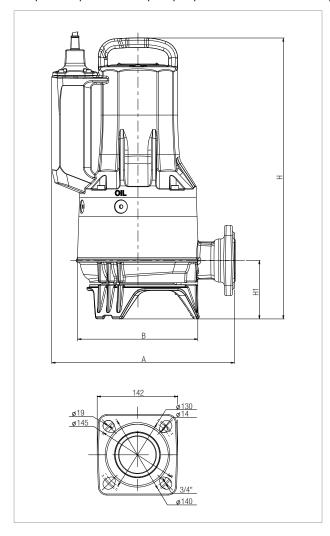
FEKA FX C 20 - POMPE SOMMERGIBILI

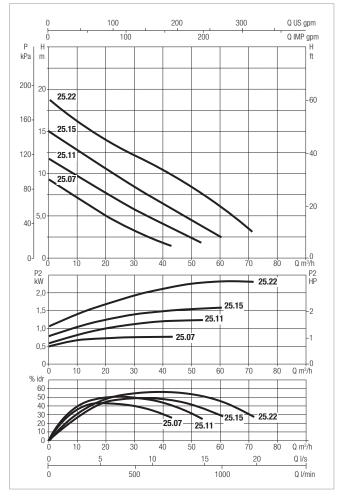
Campo di temperatura del liquido pompato: da 0° a +50°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

				DA	TI ELETTRICI			
MODELLO	ALIMENTAZIONE 50 Hz	P1 MAX kW	P2 NOI Kw	MINALE HP	In A	Is A	CONDENSATORE µF	VELOCITÀ NOM. giri/min
FEKA FXC 20.07 MA	1x230V	0,9	0,7	0,9	4,1	15	20	2870
FEKA FXC 20.07 MNA*	1x230V	0,9	0,7	0,9	4,1	15	20	2870
FEKA FXC 20.07 TNA*	3x400V	0,9	0,7	0,9	1,8	22	-	2870
FEKA FXC 20.11 MA	1x230V	1,4	1	1,3	6,3	29	25	2870
FEKA FXC 20.11 MNA*	1x230V	1,4	1	1,3	6,3	29	25	2870
FEKA FXC 20.11 TNA*	3x400V	1,3	1	1,3	2,6	19	-	2870
FEKA FXC 20.15 MA	1x230V	2	1,5	2,0	9,1	36	40	2870
FEKA FXC 20.15 MNA*	1x230V	2	1,5	2,0	9,1	36	40	2870
FEKA FXC 20.15 TNA*	3x400V	1,8	1,5	2,0	3,5	25	-	2870
FEKA FXC 20.22 TNA*	3x400V	2,8	2,2	2,9	4,9	35	-	2870

^{*}Disponibile in versione Atex


MODELLO	PASSAGGIO	٨	D	H H1	U4			DIMEI	PES0					
	LIBER0	A	В		Ex	""	GAS	DN1	FORI	D	L/A	L/B	Н	Kg
FEKA FXC 20.07*	50	322	210	468	468	103	Rp 2"	50 PN10/6	4	125-110	660	370	400	37
FEKA FXC 20.11*	50	322	210	468	487	103	Rp 2"	50 PN10/6	4	125-110	660	370	400	37
FEKA FXC 20.15*	50	322	218	468	496	103	Rp 2"	50 PN10/6	4	125-110	660	370	400	42
FEKA FXC 20.22 *	50	322	218	496	512	103	Rp 2"	50 PN10/6	4	125-110	660	370	400	43


^{*}Disponibile in versione Atex

FEKA FX C 25 - POMPE SOMMERGIBILI

Campo di temperatura del liquido pompato: da 0° a +50°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

				DA	TI ELETTRICI				
MODELLO	ALIMENTAZIONE 50 Hz	P1 MAX kW	P2 NOI Kw	MINALE HP	In A	Is A	CONDENSATORE µF	VELOCITÀ NOM. giri/min	
FEKA FXC 25.07 MA	1x230V	0,9	0,6	0,8	4,1	15	20	2870	
FEKA FXC 25.07 MNA*	1x230V	0,9	0,6	0,8	4,1	15	20	2870	
FEKA FXC 25.07 TNA*	3x400V	0,9	0,6	0,8	1,8	22	-	2870	
FEKA FXC 25.11 MA	1x230V	1,4	1,1	1,5	6,4	29	25	2870	
FEKA FXC 25.11 MNA*	1x230V	1,4	1,1	1,5	6,4	29	25	2870	
FEKA FXC 25.11 TNA*	3x400V	1,4	1,1	1,5	2,6	19	-	2870	
FEKA FXC 25.15 MA	1x230V	2	1,6	2,1	9,3	36	40	2870	
FEKA FXC 25.15 MNA*	1x230V	2	1,6	2,1	9,3	36	40	2870	
FEKA FXC 25.15 TNA*	3x400V	1,9	1,6	2,1	3,6	25	-	2870	
FEKA FXC 25.22 TNA*	3x400V	2,9	2,3	3,1	5	35	-	2870	

^{*}Disponibile in versione Atex

MODELLO	PASSAGGIO	Λ	В	ŀ	H H1			MAN	DATA		DIMEI	PES0		
MODELLO	LIBER0	A			Ex	пі	GAS	DN1	FORI	D	L/A	L/B	Н	Kg
FEKA FXC 25.07 MA	50	322	210	478	-	103	-	65 PN10/6	4	145-130	660	370	400	37
FEKA FXC 25.07 MNA - TNA*	50	322	210	468	468	103	-	65 PN10/6	4	145-130	660	370	400	37
FEKA FXC 25.11*	50	322	210	468	486	103	-	65 PN10/6	4	145-130	660	370	400	38
FEKA FXC 25.15*	50	322	218	478	496	103	-	65 PN10/6	4	145-130	660	370	400	43
FEKA FXC 25.22 *	50	322	218	496	512	103	-	65 PN10/6	4	145-130	660	370	400	44

^{*}Disponibile in versione Atex

GRINDER FX

POMPE SOMMERGIBILI

DATI TECNICI

Portata minima e massima: 23.8 m³/h

Prevalenza: 33 m

Massima profondità di immersione: 20 m

Tipo di liquido pompato: acque cariche con corpi filamentosi, materiale cartaceo o tessile in presenza di reflue di origine domestica o civile Temperatura min. e max. del liquido: + 50°C (+ 60°C per brevi periodi)

Flangiatura o filettatura di mandata e aspirazione: da 1"1/2 DN32

a DN40

Tipo girante: aperta in ghisa, con trituratore Numero massimo di avviamenti l'ora: 20/h Grado di protezione del motore: IP 68

Classificazione termica dell'isolamento del motore: F

Alimentazione Monofase: 1x 220-240V 50Hz

Alimentazione Trifase: 3x 400V 50Hz / 3x 230V 50Hz su richiesta

Tempo massimo di funzionamento a secco: 10 min Lunghezza cavo di alimentazione e tipo di spina: 10 m

H07RN8-F, per monofase; 07RN8-F, per trifase.

Tipo di installazione possibile: mobile appoggiata a terra fissa su

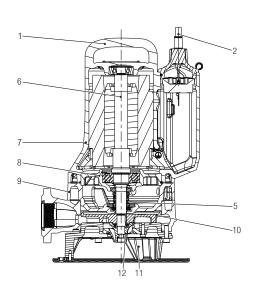
dispositivo di accoppiamento

Certificazioni \ Omologazioni: EN 12050 \ ATEX

Versioni speciali disponibili a richiesta: lunghezze del cavo diverse,

tensioni e frequenze diverse

Grinder FX è una pompa sommergibile con trituratore progettata per il drenaggio di acque cariche provenienti dagli scarichi in ambiti civili e commerciali. La pompa è certificata secondo la normativa per le acque di scarico EN 12050-1. Pompa adatta ad installazioni fisse con dispositivo di accoppiamento o mobile se appoggiata su basamento direttamente sul fondo della vasca. Grazie al trituratore ad elevate resistenza la pompa è adatta ad in impianti con tubazioni di piccolo diametro o che richiedono elevate pressioni. Progettata per una veloce manutenzione grazie ad una soluzione costruttiva che prevede un facile accesso alle componenti principali della pompa. Versioni automatiche con potenze fino a 1,5 kW. Disponibile versione ATEX per l'utilizzo in ambienti potenzialmente esplosivi. (certificazioni ATEX: II2G Ex db k IIB T4 o IEC EX: Ex db IIB T4 Gb).

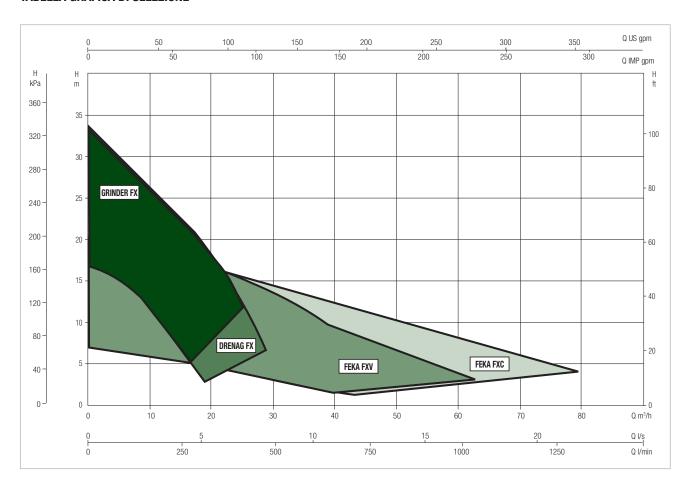

CARATTERISTICHE COSTRUTTIVE POMPA

Corpo pompa e girante in ghisa trituratore in acciaio AISI 630. Albero motore in acciaio inossidabile AISI 304. Doppia tenuta meccanica in SiC-SiC/SiC-C in camera d'olio non a contatto con il liquido pompato, indipendente dal senso di rotazione. Bocca di mandata sia flangiata che filettata.

CARATTERISTICHE COSTRUTTIVE MOTORE

Motore asincrono monofase (versioni MA/MNA) e trifase (versioni TNA). Rotore montato su cuscinetti lubrificati e stagni a lunga durata. Funzionamento continuo in S1 con motore completamente immerso. Funzionamento a secco per un tempo massimo di 10 minuti. Sensori di sovra-temperatura negli avvolgimenti del motore con soglia di intervento a 130°C. Pressacavo resinato, cavo di alimentazione 07RN8-F con connessione rapida. Versioni monofase con condesatore di marcia e avvio in una quadro separato, versioni MA con galleggiante per il funzionamento automatico installato a bordo pompa. Nei motori trifase la connessione della protezione termica integrata è a cura dell'installatore.

N°	PARTICOLARI	MATERIALI
1	MANIGLIA	GHISA EN GJL 200
2	CAVO ELETTRICO	07RN8-F
3	VITERIA	ACCIAIO AISI 304
4	OR	NBR
5	TENUTA MECC. COMP. LATO POMPA	SiC-SiC/SiC-C
5	TENUTA MECC. COMP. LATO MOTORE	SiC/CARBON
6	ALBERO MOTORE	ACCIAIO AISI 304 (P2>1.5kW) AISI 431 (P2<1.2kW)
7	CORPO POMPA / MOTORE	GHISA EN GJL 200
8	FLANGIA CUSCINETTO INTERNA	LEGA DI ALLUMINIO EN AC 46100
9	FLANGIA	GHISA EN GJL 200
10	GIRANTE	GHISA EN GJL 250
11	BASE	GHISA EN GJL 200
12	COLTELLO / BASE COLTELLO	ACCIAIO EN1.4542 / AISI 630
13	VERNICIATURA	CATAFORESI e ACRILICA BICOMPONENTE 50µm

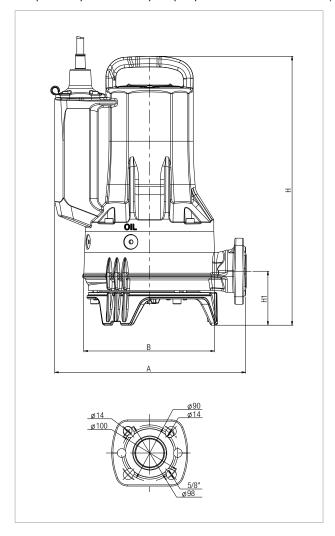


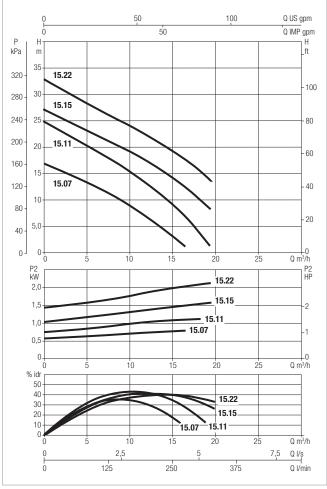
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m². Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE GRINDER FX 15


MODELLO	Q=m³/h	0	2,4	4,8	7,2	9,6	12	14,4	16,8	19,2
MODELLO	Q=I/min	0	40	80	120	160	200	240	280	320
GRINDER FX 15.07		16,9	15,2	13,4	11,4	9,2	6,7	3,9		
GRINDER FX 15.11	Н	24,9	22,6	20,5	18,3	15,9	13,2	10,1	6,3	1,8
GRINDER FX 15.15	(m)	27,3	25,2	23,3	21,4	19,5	17,3	14,8	11,9	8,5
GRINDER FX 15.22		32,8	30,5	28,5	26,5	24,4	22,3	19,9	17,2	14,0

GRINDER FX 15 - POMPE SOMMERGIBILI

Campo di temperatura del liquido pompato: da 0° a +50°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

				DA	TI ELETTRICI			
MODELLO	ALIMENTAZIONE 50 Hz	P1 MAX kW	P2 NOI Kw	MINALE HP	In A	Is A	CONDENSATORE µF	VELOCITÀ NOM. giri/min
GRINDER FX 15.07 MA	1x230V	1,1	0,8	1,1	5,3	29	25+200	2870
GRINDER FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,3	29	25+200	2870
GRINDER FX 15.07 TNA*	3x400V	1	0,8	1,1	2	22	-	2870
GRINDER FX 15.11 MA	1x230V	1,5	1,1	1,5	6,8	29	25+200	2870
GRINDER FX 15.11 MNA*	1x230V	1,5	1,1	1,5	6,8	29	25+200	2870
GRINDER FX 15.11 TNA*	3x400V	1,5	1,1	1,5	2,8	19	-	2870
GRINDER FX 15.15 MA	1x230V	2,2	1,6	2,1	9,8	36	40+100-130 μF	2870
GRINDER FX 15.15 MNA*	1x230V	2,2	1,6	2,1	9,8	36	40+100-130 μF	2870
GRINDER FX 15.15 TNA*	3x400V	2,1	1,6	2,1	3,8	25	-	2870
GRINDER FX 15.22 TNA*	3x400V	2,6	2,1	2,8	4,7	35	-	2870

^{*}Disponibile in versione Atex

MODELLO	PASSAGGIO	_	В	I	Н	H1		MANI	DATA		DIME	NSIONI IMI	BALLO	PES0
	LIBER0	A	ь		Ex	П	GAS	DN1	FORI	D	L/A	L/B	Н	Kg
GRINDER FX 15.07*	-	306	215	404	404	87	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	35
GRINDER FX 15.11*	-	306	215	404	421	87	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	35
GRINDER FX 15.15*	-	306	215	413	430	87	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	38
GRINDER FX 15.22*	-	306	215	430	448	87	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	39

^{*}Disponibile in versione Atex

DRENAG FX

POMPE SOMMERGIBILI

DATI TECNICI

Portata minima e massima: 28,5 m³/h

Prevalenza: 33 m

Massima profondità di immersione: 20 m

Tipo di liquido pompato: acque di scarico, chiare, acque grigie, acque

meteoriche e acque sabbiose di cantiere

Passaggio libero: 10 mm

Temperatura min. e max. del liquido: + 50°C (+ 60°C per brevi periodi)

Flangiatura o filettatura di mandata e aspirazione:

da 1"½ DN32 a DN40 **Tipo girante/i:** aperta

Numero massimo di avviamenti l'ora: 20/h Grado di protezione del motore: IP 68

Classificazione termica dell'isolamento del motore: F

Alimentazione Monofase: 1x 220-240V 50Hz

Alimentazione Trifase: 3x 400V 50Hz / 3x 230V 50Hz su richiesta

Tempo massimo di funzionamento a secco: 10 min Lunghezza cavo di alimentazione e tipo di spina:

10 m (altre lunghezza su richiesta) H07RN8-F, per monofase; 07RN8-F, per trifase.

Tipo di installazione possibile: mobile appoggiata a terra fissa su

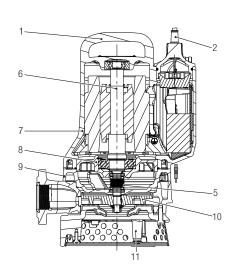
dispositivo di accoppiamento

Certificazioni \ Omologazioni: EN 12050-2 \ ATEX

Versioni speciali disponibili a richiesta: lunghezze del cavo diverse,

tensioni e frequenze diverse

DRENAG FX è una pompa sommergibile per il drenaggio di acque chiare e grigie provenienti dagli scarichi in ambiti civili e commerciali e acque di falda o piovane; adatta ad applicazioni con elevata prevalenza. La pompa è certificata secondo la normativa per le acque di scarico EN 12050-2. Adatta ad installazioni fisse con dispositivo di accoppiamento o mobile se appoggiata direttamente sul fondo della vasca. Progettata per una veloce manutenzione grazie ad una soluzione costruttiva che prevede un facile accesso alle componenti principali della pompa. Versioni automatiche con potenze fino a 1,5 kW. Disponibile versione ATEX per l'utilizzo in ambienti potenzialmente esplosivi. (certificazioni ATEX: II2G Ex db k IIB T4 o IEC EX: Ex db IIB T4 Gb).

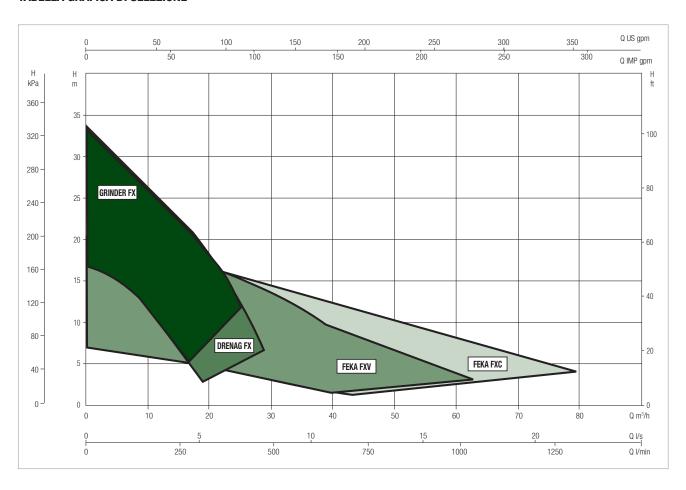

CARATTERISTICHE COSTRUTTIVE POMPA

Girante a rasamento aperta e disco gommato antiusura per l'utilizzo anche in presenza di particelle abrasive. Corpo pompa e girante in ghisa sferoidale. Albero motore in acciaio inossidabile AlSI 304. Doppia tenuta meccanica in SiC-SiC/SiC-C in camera d'olio non a contatto con il liquido pompato. Bocca di mandata sia flangiata che filettata.

CARATTERISTICHE COSTRUTTIVE MOTORE

Motore asincrono monofase (versioni MA/MNA) e trifase (versioni TNA). Rotore montato su cuscinetti lubrificati e stagni a lunga durata. Funzionamento continuo in S1 con motore completamente immerso. Funzionamento a secco per un tempo massimo di 10 minuti. Sensori di sovra-temperatura negli avvolgimenti del motore con soglia di intervento a 130°C. Pressacavo resinato, cavo di alimentazione 07RN8-F con connessione rapida. Versioni monofase con condensatore integrato, disponibili con galleggiante per il funzionamento automatico (versione MA) con potenze fino a 1,5 kW. Nei motori trifase la connessione della protezione termica integrata è a cura dell'installatore.

N°	PARTICOLARI	MATERIALI
1	MANIGLIA	GHISA EN GJL 200
2	CAVO ELETTRICO	07RN8-F
3	VITERIA	ACCIAIO AISI 304
4	OR	NBR
5	TENUTA MECC. COMP. LATO POMPA	SiC-SiC/SiC-C
) 5	TENUTA MECC. COMP. LATO MOTORE	SiC/CARBON
6	ALBERO MOTORE	ACCIAIO AISI 304 (P2>1.5kW) AISI 431 (P2<1.2kW)
7	CORPO POMPA / MOTORE	GHISA EN GJL 200
8	FLANGIA CUSCINETTO INTERNA	LEGA DI ALLUMINIO EN AC 46100
9	FLANGIA	GHISA EN GJL 200
10	GIRANTE	GHISA EN GJL 250
11	BASE	GHISA EN GJL 200 + GOMMA NATURALE
13	VERNICIATURA	CATAFORESI e ACRILICA BICOMPONENTE 50µm

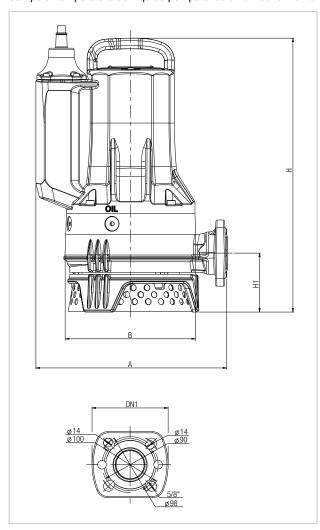


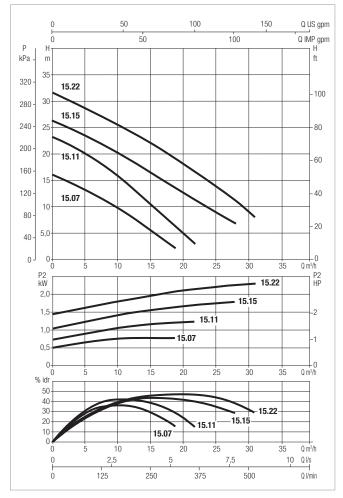
POMPE SOMMERGIBILI

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m². Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE


TABELLA DI SELEZIONE DRENAG FX 15


MODELLO	Q=m³/h	0	3	6	9	12	15	18	21	24	27	30
MODELLO	Q=I/min	0	50	100	150	200	250	300	350	400	450	500
DRENAG FX 15.07		16,2	14,5	12,6	10,5	8,1	5,5	2,8				
DRENAG FX 15.11	Н	23,3	21,5	19,3	16,7	13,8	10,6	7,3	3,8			
DRENAG FX 15.15	(m)	26,4	24,9	23,1	21,1	18,9	16,6	14,2	11,8	9,5	7,4	
DRENAG FX 15.22		31,8	30,0	28,2	26,3	24,3	22,1	19,8	17,4	14,8	12,0	9,0

DRENAG FX 15 - POMPE SOMMERGIBILI

Campo di temperatura del liquido pompato: da 0° a +50°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1~\text{mm}^2/\text{s}$ e densità pari a $1000~\text{kg/m}^3$. Tolleranza delle curve secondo ISO9906.

				DA	TI ELETTRICI			
MODELLO	ALIMENTAZIONE 50 Hz	P1 MAX kW	P2 NOI Kw	MINALE HP	In A	Is A	CONDENSATORE µF	VELOCITÀ NOM. giri/min
DRENAG FX 15.07 MA	1x230V	1,1	0,8	1,1	5,1	29	25	2870
DRENAG FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,1	29	25	2870
DRENAG FX 15.07 TNA*	3x400V	1	0,8	1,1	2,1	22	-	2870
DRENAG FX 15.11 MA	1x230V	1,5	1,2	1,6	6,8	29	25	2870
DRENAG FX 15.11 MNA*	1x230V	1,5	1,2	1,6	6,8	29	25	2870
DRENAG FX 15.11 TNA*	3x400V	1,5	1,2	1,6	2,8	19	-	2870
DRENAG FX 15.15 MA	1x230V	2,3	1,8	2,4	10,6	36	40	2870
DRENAG FX 15.15 MNA*	1x230V	2,3	1,8	2,4	10,6	36	40	2870
DRENAG FX 15.15 TNA*	3x400V	2,5	1,8	2,4	4,3	25	-	2870
DRENAG FX 15.22 TNA*	3x400V	3,1	2,3	3,1	5,2	35	-	2870

^{*}Disponibile in versione Atex

N	MODELLO	PASSAGGIO	٨	В	ŀ	1	H1		MANI	DATA		DIMEI	NSIONI IMI	BALLO	PES0
IV	IODELLO	LIBER0	A	ь		Ex	111	GAS	DN1	FORI	D	L/A	L/B	Н	Kg
DRENAG FX 1	5.07*	10	306	215	412	412	95	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	35
DRENAG FX 1	5.11*	10	306	215	412	430	95	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	35
DRENAG FX 1	5.15*	10	306	215	421	439	95	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	38
DRENAG FX 1	5.22*	10	306	215	439	456	95	Rp 1"1/2	DN32 PN10 / 6 DN40 PN6	4 2	100-90 90	660	370	400	39

^{*}Disponibile in versione Atex

FK

ELETTROPOMPE SOMMERGIBILI PER PER ACQUE REFLUE

DATI TECNICI

Tipo girante: Vortex; Monocanale. **Passaggio Libero:** $65 \div 100$ mm. **Potenza Nominale:** $1,1 \div 11$ kW. **Mandata:** DN 65 / 80 / 100 / 150.

Campo di funzionamento: da 4.3 a 280 m³/h con prevalenza fino a 41 metri. **Liquido pompato:** reflui e scarichi provenienti da insediamenti privati, commerciali e da reti di fognatura urbane, compatibile con i materiali di costruzione.

PH del liquido: $6.5 \div 12$.

Campo di temperatura del liquido: da 0° a +40°C. Per temperature

superiori contattare la nostra rete vendita. **Massima profondità di installazione:** 20 metri

(con cavo di adatta lunghezza).

Installazione: fissa per mezzo di dispositivo d'accoppiamento,o libera in posizione verticale per mezzo di basamento.

Servizio continuo con pompa totalmente immersa, o discontinuo S3 in

rispetto dei livelli minimi.

Omologazioni: EN 12050-1 e Ex (ATEX, IECEx).

APPLICAZIONI

Adatte al pompaggio di reflui e scarichi provenienti da insediamenti privati, commerciali e da reti di fognatura urbane, in accordo con la normativa Europea EN 12050-1. Disponibili in versione antideflagrante per l'utilizzo in ambienti potenzialmente esplosivi (certificazioni ATEX: II2G Ex db k IIB T4 o IECEx: Ex db IIB T4 Gb).

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Giranti vortex a passaggio libero totale con nuovo profilo anti intasamento, giranti monocanali con elevati rendimenti e certificate 12050-1.

Doppia tenuta meccanica a cartuccia di serie in carburo di silicio SiC-SiC lato idraulica, in carburo di silicio SiC/C lato motore, indipendente dal senso di rotazione.

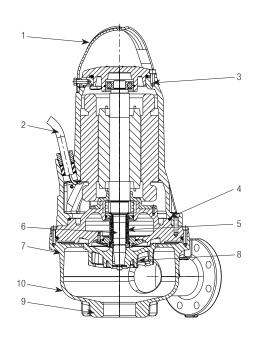
Bocca di mandata radiale flangiata EN 1092-1 , diametro DN 65, DN80, DN 100, DN150 PN16.

Viscosità del liquido: 1mm2/s.

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Motore asincrono trifase, con rotore a gabbia di scoiattolo, ad elevato rendimento in classe di Efficienza IE3. Motori sommergibili per installazione sotto battente, idonei al funzionamento continuo S1 o S3 secondo i livelli minimi indicati. Sensore di infiltrazione acqua in camera olio, in grado di segnalare eventuali infiltrazioni attraverso la tenuta meccanica (Optional). Sensori di sovratemperatura negli avvolgimenti motore, con soglia di intervento a 130°C Modalità di avviamento: 1.1 - 4.0 kW = diretto (DOL); 5.5 - 11.0 kW = stella-triangolo (Y/Δ)

Cuscinetti lubrificati a lunga durata, per una vita utile calcolata di minimo 50.000 ore


Albero motore in acciao inox, progettato con un elevata resistenza a fatica.

Grado di protezione del motore: IP 68.

Classe di isolamento: F. Max avviamenti /ora: 20.

N°	PARTICOLARI	MATERIALI
1	Maniglia	Acciaio (AISI 304)
2	Cavo elettrico	07RN8-F
3	Viteria	Acciaio (AISI 304)
4	OR	NBR
	Tenuta mecc. Comp. Lato pompa	SiC/SiC
5	Tenuta mecc. Comp. Lato motore	SiC/Carbon
	Anello di Tenuta*	HNBR
6	Albero motore	Acciaio (AISI 420)
7	Corpo pompa / motore	Ghisa (EN GJL 200)
8	Girante	Ghisa (EN GJL 250)
9	Anello di rasamento	Ghisa (EN GJL 150)
10	Verniciatura	Acrilica Bicomponente 50µm

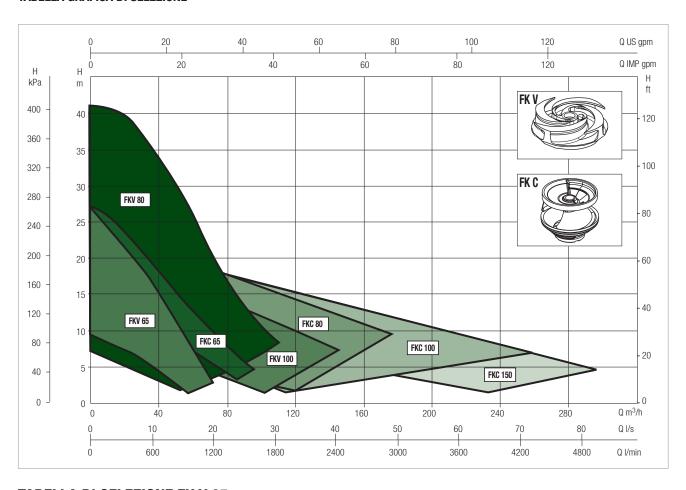
^{*} solo a partire da 3kW 4poli e da 4kW 2 poli

- Indice di denominazione (esempio)

FK
FK Famiglia pompe FK C Girante monocanale V Girante vortex 65 Diametro di mandata 80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
FK Famiglia pompe FK C Girante monocanale V Girante vortex 65 Diametro di mandata 80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
FK Famiglia pompe FK C Girante monocanale V Girante vortex 65 Diametro di mandata 80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
C Girante monocanale V Girante vortex 65 Diametro di mandata 80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
V Girante vortex 65 Diametro di mandata 80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
65 Diametro di mandata 80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
80 100 150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
150 22 Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) 2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
Potenza nominale approssimata kW x10 (a, b, c, d in caso di curve diverse dalla stessa potenza) Numero di poli Trifase Frequenza di alimentazione 5 = 50hz - 6 = 60hz 20
(a, b, c, d in caso di curve diverse dalla stessa potenza) Numero di poli Trifase Frequenza di alimentazione 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
2 Numero di poli 4 T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di awiamento 220-277 D.O.L.
T Trifase 5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
5 Frequenza di alimentazione 6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
6 5 = 50hz - 6 = 60hz 230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
230 D.O.L. Tensione di alimentazione e tipo di avviamento 220-277 D.O.L.
220-277 D.O.L.
400 D.U.L.
380-480 D.O.L.
230 Y/D
400 Y/D
220-277 Y/D
380-480 Y/D
Non antideflagrante
EX Antideflagrante (ATEX)
Versione senza sensore acqua nell'olio
S Versione con sensore acqua nell'olio (no versione Ex)
Lunghezza cavo 10m
20,30,50 Lunghezza cavo specifica

STANDARD E OPZIONI

	STANDARD	OPZIONE
TENSIONI PRINCIPALI	3 x 400 V~	3 x 230 V~
TOLLERANZA AMMISSIBILE SULLA TENSIONE DI ALIMENTAZIONE	+ 6 % / -10 %, 50 Hz	-
SENSORI DI SOVRATEMPERATURA NEGLI AVVOLGIMENTI MOTORE	150° C	-
TENUTA MECCANICA (LATO IDRAULICA)	SiC/SiC	-
TENUTA MECCANICA (LATO MOTORE)	SiC/Carbon	
SENSORE IN CAMERA OLIO	-	SI
LUNGHEZZA CAVO (M)	10	20-30-50
OMOLOGAZIONI	EN 12050 -1	Ex (ATEX , IECEx)
0-RING	NBR	FKM (Viton®)
TIPOLOGIA DI INSTALLAZIONE	Sommergibile	-


GAMMA FK

ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

CAMPO DELLE PRESTAZIONI

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

TABELLA GRAFICA DI SELEZIONE

TABELLA DI SELEZIONE FK V 65

MODELLO	Q=m³/h	0	7,2	14,4	21,6	28,8	36	43,2	50,4	57,6	64,8	72	79,2	86,4	93,6	100,8	108
INIODELLO	Q=I/min	0	120	240	360	480	600	720	840	960	1080	1200	1320	1440	1560	1680	1800
FKV 65 11.4 T5 400D		9,1	8,7	7,9	6,7	5,3	4,0	2,7	1,8								
FKV 65 22.2 T5 400D	Н	16,5	14,3	11,8	9,1	6,6	4,3	2,7									
FKV 65 30.2 T5 400D	(m)	21,1	19,5	17,1	14,2	11,1	8,1	5,4	3,4	2,3							
FKV 65 40.2 T5 400D		27,2	26,0	24,0	21,3	18,3	15,1	11,8	8,8	6,2	4,2	3,0					

TABELLA DI SELEZIONE FK V 80

MODELLO	Q=m³/h	0	7,2	14,4	21,6	28,8	36	43,2	50,4	57,6	64,8	72	79,2	86,4	93,6	100,8	108
IVIODELLO	Q=I/min	0	120	240	360	480	600	720	840	960	1080	1200	1320	1440	1560	1680	1800
FKV 80 11.4 T5 400D		7,0	6,7	6,1	5,3	4,5	3,6	2,7	1,9	1,3							
FKV 80 15.4 T5 400D		9,5	9,3	8,9	8,1	7,2	6,1	5,0	3,9	3,0	2,3	1,9					
FKV 80 22.4 T5 400D		11,8	11,6	11,3	10,8	10,0	9,1	8,0	6,9	5,8	4,7	3,7	2,8				
FKV 80 40.4 T5 400D		17,5	17,1	16,5	15,7	14,9	14,0	13,1	12,1	11,1	10,0	9,0	8,1	7,1			
FKV 80 40.2 T5 400D	H (m)	22,1	21,1	19,5	17,3	14,9	12,2	9,7	7,3	5,2	3,7	2,9					
FKV 80 60.2 T5 400Y/D	(**/	29,1	28,4	27,0	25,1	22,8	20,3	17,6	14,8	12,2	9,8	7,5	5,5				
FKV 80 75.2 T5 400Y/D		32,1	31,8	30,8	29,1	27,0	24,5	21,8	18,9	16,0	13,2	10,6	8,4	6,6	5,4		
FKV 80 92.2 T5 400Y/D		36,2	35,9	35,1	33,7	31,7	29,2	26,4	23,4	20,3	17,3	14,3	11,7	9,5	7,7	6,6	
FKV 80 110.2 T5 400Y/D		41,2	41,0	40,5	39,2	37,4	35,2	32,6	29,7	26,6	23,5	20,3	17,3	14,6	12,1	10,0	8,5

GAMMA FK

ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

TABELLA DI SELEZIONE FK V 100

MODELLO	Q=m³/h	0,0	14,4	28,8	43,2	57,6	72,0	86,4	100,8	115,2	129,6	144,0
INIODELLO	Q=I/min	0,0	240	480	720	960	1200	1440	1680	1920	2160	2400
FKV 100 30.4 T5 400D		11,8	10,9	9,7	8,2	6,5	4,9	3,4	2,3			
FKV 100 40.4 T5 400D	Н	14,0	13,2	12,0	10,6	9,0	7,4	5,8	4,3	3,1		
FKV 100 55.4 T5 400Y/D	(m)	15,9	15,6	14,9	13,8	12,6	11,1	9,6	8,0	6,5	5,0	
FKV 100 75.4 T5 400Y/D		19,0	18,8	18,3	17,5	16,5	15,2	13,9	12,4	10,8	9,2	7,7

TABELLA DI SELEZIONE FK C 65

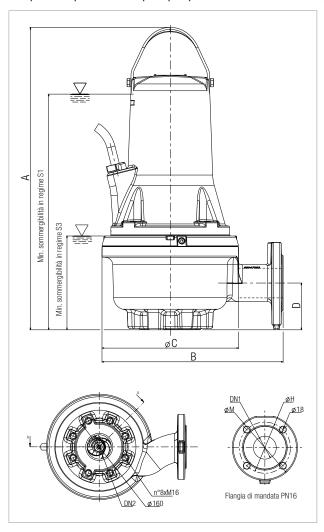
MODELLO	Q=m³/h	0	7,2	14,4	21,6	28,8	36	43,2	50,4	57,6	64,8	72	79,2	86,4	93,6	100,8
	Q=I/min	0	120	240	360	480	600	720	840	960	1080	1200	1320	1440	1560	1680
FKC 65 22.2 T5 400D	Н	20,0	17,8	15,9	14,3	12,8	11,6	10,4	9,3	8,3	7,2	6,1	4,9	3,6		
FKC 65 30.2 T5 400D	(m)	26,5	23,5	20,9	18,6	16,7	15,1	13,7	12,4	11,2	10,1	9	7,8	6,5	5,1	3,4

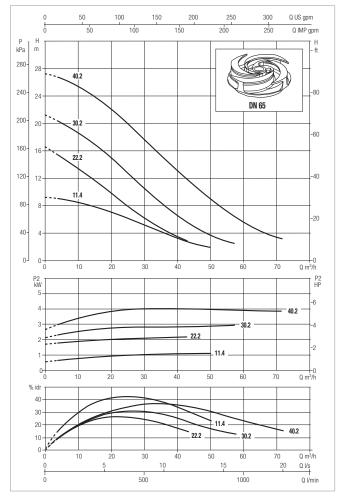
TABELLA DI SELEZIONE FK C 80

MODELLO -	Q=m³/h	0	14	29	43	58	72	86	101	115	130	144	158	173	187
INIODELLO	Q=I/min	0	240	480	720	960	1200	1440	1680	1920	2160	2400	2640	2880	3120
FKC 80 15.4 T5 400D		8,9	7,9	6,9	6,1	5,3	4,5	3,6	2,8	1,9					
FKC 80 22.4 T5 400D		13,9	12,0	10,5	9,2	8,0	7,0	6,0	5,0	3,9	2,6				
FKC 80 30.4 T5 400D	Н	13,9	12,4	11,1	10,0	9,0	8,1	7,2	6,4	5,4	4,4	3,3			
FKC 80 40.4 T5 400D	(m)	17,4	15,7	14,3	13,0	11,9	10,9	10,0	9,2	8,3	7,4	6,4	5,3		
FKC 80 55.4 T5 400Y/D		21	19,4	18	16,7	15,5	14,4	13,3	12,3	11,3	10,4	9,5	8,5	7,6	5,4
FKC 80 75.4 T5 400Y/D		24,6	22,7	21,1	19,6	18,2	17	15,9	14,8	13,7	12,7	11,7	10,6	9,4	8,2

TABELLA DI SELEZIONE FK C 100

MODELLO	Q=m³/h	0	22	43	65	86	108	130	151	173	194	216	238	259	281
IVIODELLO	Q=I/min	0	360	720	1080	1440	1800	2160	2520	2880	3240	3600	3960	4320	4680
FKC 100 15.4 T5 400D		8,9	7,3	6,0	4,7	3,5	2,2								
FKC 100 22.4 T5 400D		14,1	11,5	9,5	7,8	6,3	4,8	3,1							
FKC 100 30.4 T5 400D	Н	9,8	9,2	8,5	7,8	6,9	6,0	5,1	4,2	3,3	2,4				
FKC 100 40.4 T5 400D	(m)	13,1	11,8	10,7	9,5	8,5	7,4	6,4	5,4	4,4	3,3				
FKC 100 55.4 T5 400Y/D		17,4	15,9	14,6	13,3	12	10,9	9,7	8,6	7,5	6,4	5,2	4	2,7	
FKC 100 75.4 T5 400Y/D		22,5	20,8	19,2	17,7	16,3	14,9	13,7	12,4	11,2	10,1	8,9	7,6	6,4	5,1


TABELLA DI SELEZIONE FK C 150


MODELLO	Q=m³/h	0	22	43	65	86	108	130	151	173	194	216	238	259	281	302
INIODELLO	Q=I/min	0	360	720	1080	1440	1800	2160	2520	2880	3240	3600	3960	4320	4680	5040
FKC 150 30.4 T5 400D		9,7	9,1	8,5	7,8	7,1	6,3	5,5	4,7	3,8	3,0	2,1				
FKC 150 40.4 T5 400D	Н	13,3	12,1	11,1	10,1	9,1	8,1	7,2	6,2	5,3	4,3	3,2	2,2			
FKC 150 55.4 T5 400Y/D	(m)	17,3	15,8	14,4	13,1	12	10,9	9,9	8,9	8	7,1	5,1	5,3	4,3	3,3	
FKC 150 75.4 T5 400Y/D		22,5	20,7	19,1	17,6	16,3	15	13,9	12,8	11,7	10,7	8,6	8,7	7,7	6,7	5,5

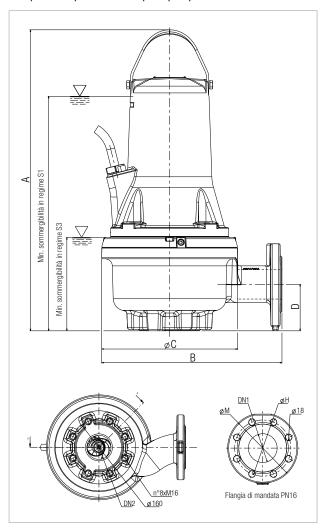
FK V 65 - 2/4 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

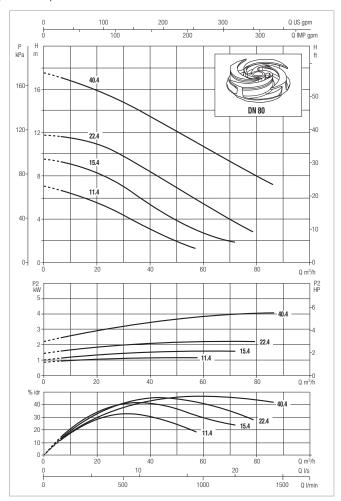
Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

							DATI ELETTRIC				
MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NOI	MINALE HP	In A	ls A	η% мотоке	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAV0
FKV 65 11.4 T5 400D	3 x 400 V~	1,3	1,1	1,5	3,3	9,9	85,0%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKV 65 22.2 T5 400D	3 x 400 V~	2,5	2,2	3,0	4,8	19,1	87,5%	100% S1	2900	DOL	10mt 4G1.5+3x1
FKV 65 30.2 T5 400D	3 x 400 V~	3,3	3,0	4,0	5,7	19,1	87,7%	100% S1	2900	DOL	10mt 4G1.5+3x1
FKV 65 40.2 T5 400D	3 x 400 V~	4,6	4,0	5,5	7,5	27,0	89,1%	100% S1	2900	DOL	10mt 4G1.5+3x1

Modelli disponibili in versione antideflagrante ATEX o IECEx. Solo per applicazioni con pompa completamente immersa.


* %S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.

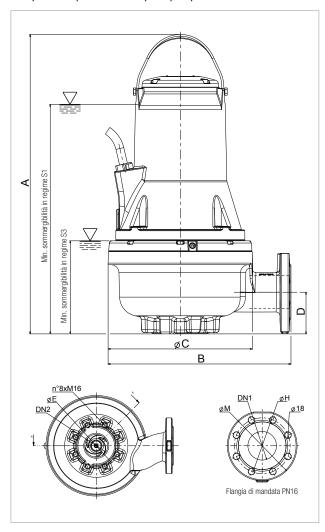

MODELLO	PASSAGGIO	_	D	C	n	C1	S3	DN2	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIME	NSIONI IME	BALLO	PES0
MODELLO	LIBER0	A	В	U	D	S1	33	DINZ	DN1	M	Н	N° FORI	L/A	L/B	Н	Kg
FKV 65 11.4 T5 400D	55	662	396	300	102	515	206	65	65	185	145	4	830	430	603	105
FKV 65 22.2 T5 400D	65	662	396	300	102	515	206	65	65	185	145	4	830	430	603	105
FKV 65 30.2 T5 400D	65	662	396	300	102	515	206	65	65	185	145	4	830	430	603	105
FKV 65 40.2 T5 400D	65	720	456	360	106	585	245	65	65	185	145	4	1030	530	668	147

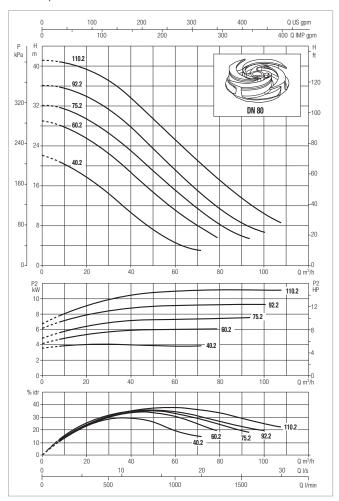
FK V 80 - 4 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

							DATI ELETTRIC	I			
MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NOI	MINALE HP	In A	ls A	η% MOTORE	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAVO
FKV 80 11.4 T5 400D	3 x 400 V~	1,3	1,1	1,5	3,5	11,4	85,2%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKV 80 15.4 T5 400D	3 x 400 V~	1,8	1,5	2,0	3,8	11,4	87,2%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKV 80 22.4 T5 400D	3 x 400 V~	2,5	2,2	3,0	4,7	11,4	87,8%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKV 80 40.4 T5 400D	3 x 400 V~	4,5	4,0	5,5	9,5	20,0	88,8%	100% S1	1450	DOL	10mt 4G1.5+3x1


^{* %}S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.

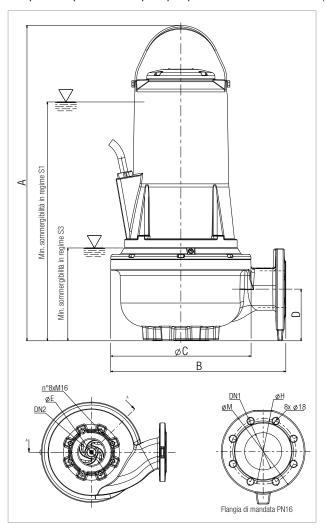

MODELLO	PASSAGGIO	_	D	C	n	S1	S3	DN2	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIME	NSIONI IME	BALLO	PES0
MODELLO	LIBERO	A	В	U	U	31	33	DINZ	DN1	M	Н	N° FORI	L/A	L/B	Н	Kg
FKV 80 11.4 T5 400D	80	686	409	336	109	540	230	80	80	200	160	8	830	430	603	114
FKV 80 15.4 T5 400D	80	686	409	336	109	540	230	80	80	200	160	8	830	430	603	114
FKV 80 22.4 T5 400D	80	686	409	336	109	540	230	80	80	200	160	8	830	430	603	115
FKV 80 40.4 T5 400D	80	749	460	386	109	575	235	80	80	200	160	8	1030	530	668	170

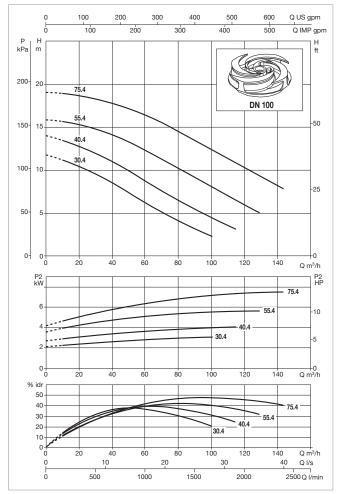
FK V 80 - 2 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

							DATI ELETTRIC				
MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NON	MINALE HP	In A	ls A	η% мотоке	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAV0
FKV 80 40.2 T5 400D	3 x 400 V~	4,6	4,0	5,5	7,7	27,0	88,2%	100% S1	2900	DOL	10mt 4G1.5+3x1
FKV 80 60.2 T5 400Y/D	3 x 400 V~	6,9	6,0	8,2	11,7	43,5	88,0%	45%	2900	Υ/Δ	10mt 7G2,5+3x1
FKV 80 75.2 T5 400Y/D	3 x 400 V~	8,3	7,5	10,2	13,7	41,2	90,7%	40%	2900	Υ/Δ	10mt 7G2,5+3x1
FKV 80 92.2 T5 400Y/D	3 x 400 V~	10,2	9,2	12,5	18,0	119,0	90,8%	45%	2900	Υ/Δ	10mt 7G2,5+3x1
FKV 80 110.2 T5 400Y/D	3 x 400 V~	12,1	11,0	15,0	21,0	121,0	91,2%	40%	2900	Υ/Δ	10mt 7G2,5+3x1


^{* %}S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.

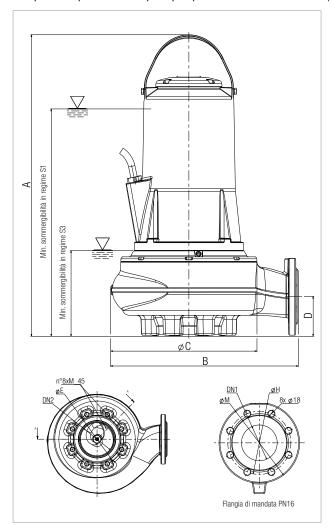

MODELLO	PASSAGGIO	_	D	С	D	S1	S3	DN2	DIMENSI	ONE FLANG	GIA EN 109	2-1 PN16	DIME	NSIONI IME	BALLO	PES0
MODELLO	LIBER0	A	В	6	ט	31	33	DINZ	DN1	М	Н	N° FORI	L/A	L/B	Н	Kg
FKV 80 40.2 T5 400D	80	747	456	360	104	575	235	80	80	200	160	8	1030	530	668	153
FKV 80 60.2 T5 400Y/D	80	747	456	360	104	575	235	80	80	200	160	8	1030	530	668	168
FKV 80 75.2 T5 400Y/D	80	747	456	360	104	575	235	80	80	200	160	8	1030	530	668	168
FKV 80 92.2 T5 400Y/D	80	863	488	390	123	650	240	80	80	200	160	8	1030	530	668	218
FKV 80 110.2 T5 400Y/D	80	863	488	390	123	650	240	80	80	200	160	8	1030	530	668	218

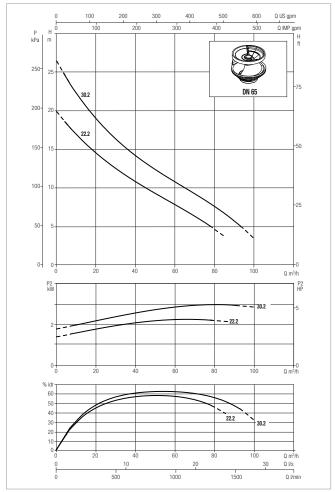
FK V 100 - 4 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

							DATI ELETTRICI				
MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NON	/IINALE HP	In A	ls A	η _% мотоке	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAV0
FKV 100 30.4 T5 400D	3 x 400 V~	3,5	3,0	4,0	8,0	24,7	87,8%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKV 100 40.4 T5 400D	3 x 400 V~	4,5	4,0	5,5	8,9	20,0	88,8%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKV 100 55.4 T5 400Y/D	3 x 400 V~	6,2	5,5	7,5	11,3	50,3	90,8%	80%	1450	Υ/Δ	10mt 7G2,5+3x1
FKV 100 75.4 T5 400Y/D	3 x 400 V~	8,3	7,5	10,0	14,3	44,5	90,6%	60%	1450	Υ/Δ	10mt 7G2,5+3x1


^{* %}S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.


	MODELLO	PASSAGGIO		В		D	C1	S3	DN2	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIME	NSIONI IME	BALLO	PES0
	MODELLO	LIBER0	A	D		D	S1	33	DINZ	DN1	M	Н	N° FORI	L/A	L/B	Н	Kg
FKV 1	100 30.4 T5 400D	100	760	457	360	134	585	245	100	100	230	180	8	1030	530	668	167
FKV 1	100 40.4 T5 400D	100	760	457	360	134	585	245	100	100	230	180	8	1030	530	668	167
FKV 1	100 55.4 T5 400Y/D	100	883	490	390	123	670	230	100	100	230	180	8	1030	530	668	221
FKV 1	100 75.4 T5 400Y/D	100	883	490	390	123	670	230	100	100	230	180	8	1030	530	668	221

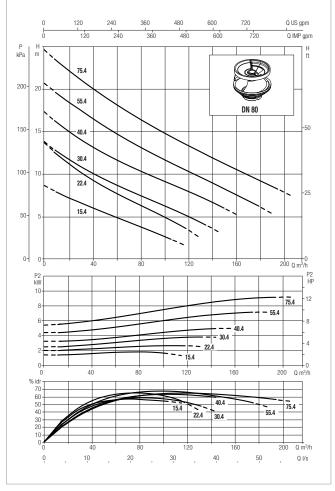
FK C 65 - 2 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

							DATI ELETTRIC				
MODELLO	ALIMENTAZIONE	P1	P2 N0	/INALE	ln	ls	no MOTORE	% S3 *	VELOCITÀ NOM.	AVVIAMENTO	CAVO
	50 Hz	kW	kW	HP	Α	Α	11% MUTUKE	MOTORE EMERSO	giri/min	AVVIAIVIENTO	GAVU
FKC 65 22.2 T5 400D	3 x 400 V~	2,6	2,2	3,0	4,8	19,1	87,3%	100% S1	2900	DOL	10mt 4G1.5+3x1
FKC 65 30.2 T5 400D	3 x 400 V~	3,4	3,0	4,0	5,8	19,1	87,8%	100% S1	2900	DOL	10mt 4G1.5+3x1


^{* %}S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.


	MODELLO	PASSAGGIO	Λ	D	C	n	S1	S3	DN2	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIMEI	NSIONI IME	BALLO	PES0
	INIODELLO	LIBER0	A	D	U	U	31	33	DINZ	DN1	M	Н	N° FORI	L/A	L/B	Н	Kg
FKC (65 22.2 T5 400D	50	645	365	300	91	494	188	65	65	185	145	4	830	430	603	104
FKC (65 30.2 T5 400D	50	645	365	300	91	494	188	65	65	185	145	4	830	430	603	104

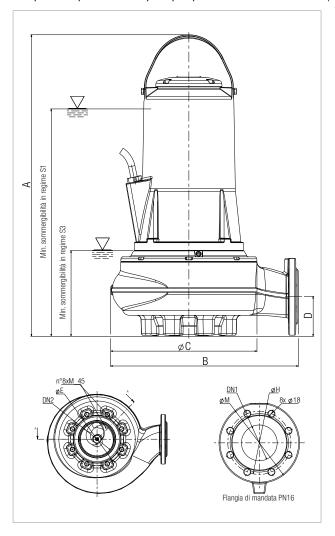
FK C 80 - 4 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

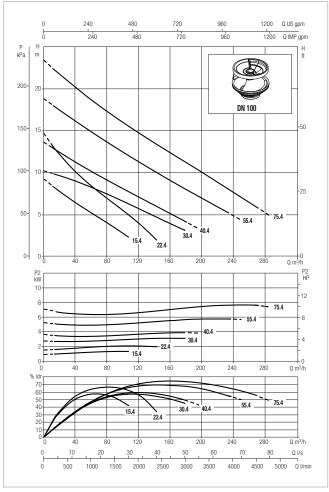
Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

							DATI ELETTRIC	Cl			
MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NOI kW	MINALE HP	In A	ls A	η% мотоке	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAVO
FKC 80 15.4 T5 400D	3 x 400 V~	1,8	1,5	2,0	3,5	11,4	87,2%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 80 22.4 T5 400D	3 x 400 V~	2,6	2,2	3,0	4,7	11,4	87,3%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 80 30.4 T5 400D	3 x 400 V~	3,6	3,0	4,0	7,6	24,7	87,9%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 80 40.4 T5 400D	3 x 400 V~	4,7	4,0	5,5	8,9	20,0	88,6%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 80 55.4 T5 400Y/D	3 x 400 V~	6,3	5,5	7,5	12	50,3	89,8%	80%	1450	Υ/Δ	10mt 7G2,5+3x1
FKC 80 75.4 T5 400Y/D	3 x 400 V~	8,5	7,5	10,0	14,1	44,5	90,7%	60%	1450	Υ/Δ	10mt 7G2,5+3x1

Modelli disponibili in versione antideflagrante ATEX o IECEx. Solo per applicazioni con pompa completamente immersa.


* %S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.


MODELLO	PASSAGGIO	٨	В	С	D	S1	S3	DN2	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIME	NSIONI IME	BALLO	PES0
MODELLO	LIBER0	A	D	U	ט	31	33	DINZ	DN1	М	Н	N° FORI	L/A	L/B	Н	Kg
FKC 80 15.4 T5 400D	80	665	435	355	100	514	208	100	80	200	160	8	830	430	603	167
FKC 80 22.4 T5 400D	80	665	435	355	100	514	208	100	80	200	160	8	830	430	603	167
FKC 80 30.4 T5 400D	80	750	506	380	118	548	210	100	80	200	160	8	1030	530	728	221
FKC 80 40.4 T5 400D	80	750	506	380	118	548	210	100	80	200	160	8	1030	530	728	221
FKC 80 55.4 T5 400Y/D	80	860	530	407	118	660	250	100	80	200	160	8	1030	530	728	231
FKC 80 75.4 T5 400Y/D	80	860	530	407	118	660	250	100	80	200	160	8	1030	530	728	237

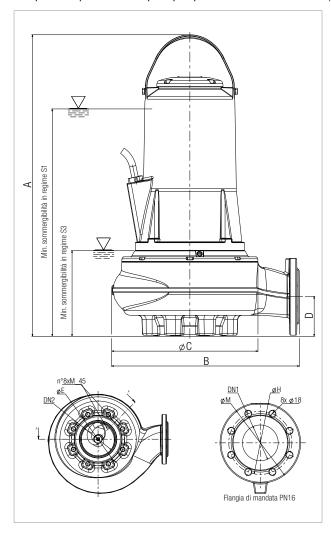
FK C 100 - 4 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

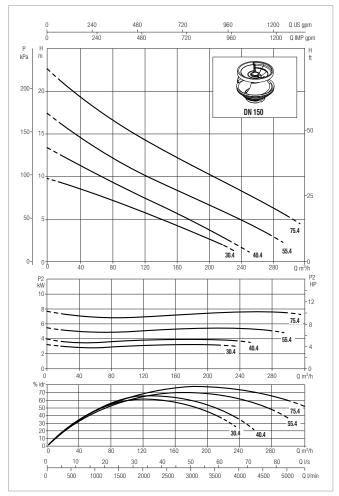
Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

							DATI ELETTRI	Cl			
MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NOI	MINALE	In A	ls A	η _% мотоке	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAVO
FKC 100 15.4 T5 400D	3 x 400 V~	1,8	1,5	2,0	3,9	11,4	87,2%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 100 22.4 T5 400D	3 x 400 V~	2,6	2,2	3,0	4,7	11,4	87,3%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 100 30.4 T5 400D	3 x 400 V~	3,3	3,0	4,0	7,7	24,7	88,0%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 100 40.4 T5 400D	3 x 400 V~	4,2	4,0	5,5	8,6	20,0	89,6%	100% S1	1450	DOL	10mt 4G1.5+3x1
FKC 100 55.4 T5 400Y/D	3 x 400 V~	5,7	5,5	7,5	11,4	50,3	90,9%	80%	1450	Υ/Δ	10mt 7G2,5+3x1
FKC 100 75.4 T5 400Y/D	3 x 400 V~	8,1	7,5	10,0	14,6	44,5	90,4%	60%	1450	Υ/Δ	10mt 7G2,5+3x1

Modelli disponibili in versione antideflagrante ATEX o IECEx. Solo per applicazioni con pompa completamente immersa.


* %S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.


MODELLO	PASSAGGIO	٨	В	C	D	S1	S3	DN2	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIMEI	NSIONI IME	BALLO	PES0
MIODELLO	LIBER0	A	D	U	ט	31	33	DINZ	DN1	М	Н	N° FORI	L/A	L/B	Н	Kg
FKC 100 15.4 T5 400D	80	677	435	355	112	526	220	100	100	224	180	8	803	430	603	117
FKC 100 22.4 T5 400D	80	677	435	355	112	526	220	100	100	224	180	8	803	430	603	117
FKC 100 30.4 T5 400D	100	758	544	430	116	558	220	150	100	224	180	8	1030	530	728	190
FKC 100 40.4 T5 400D	100	758	544	430	116	558	220	150	100	230	180	8	1030	530	728	190
FKC 100 55.4 T5 400Y/D	100	870	540	445	115	660	250	150	100	225	180	8	1030	530	728	238
FKC 100 75.4 T5 400Y/D	100	870	540	445	115	660	250	150	100	230	180	8	1030	530	728	238

FK C 150 - 4 POLI - ELETTROPOMPE SOMMERGIBILI PER ACQUE REFLUE

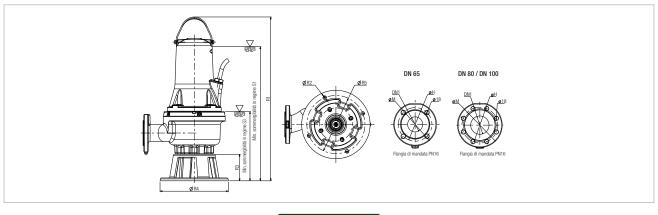
Campo di temperatura del liquido pompato: da 0° a +40°C. Per temperature superiori contattare la nostra rete vendita.

Le curve di prestazione sono basate su valori di viscosità cinematica $= 1 \text{ mm}^2/\text{s}$ e densità pari a 1000 kg/m^3 . Tolleranza delle curve secondo ISO9906.

								DATI ELETTRICI				
	MODELLO	ALIMENTAZIONE 50 Hz	P1 kW	P2 NOI	MINALE HP	In A	ls A	η% мотоке	% S3 * MOTORE EMERSO	VELOCITÀ NOM. giri/min	AVVIAMENTO	CAVO
FK	C 150 30.4 T5 400D	3 x 400 V~	3,7	3,0	4,1	7,8	20,0	88,8%	100% S1	1450	DOL	10mt 4G1.5+3x1
FK	C 150 40.4 T5 400D	3 x 400 V~	4,5	4,0	5,5	8,7	20,0	88,8%	100% S1	1450	DOL	10mt 4G1.5+3x1
FK	C 150 55.4 T5 400Y/D	3 x 400 V~	6,0	5,5	7,5	11,3	50,3	90,8%	80%	1450	Υ/Δ	10mt 7G2,5+3x1
FK	C 150 75.4 T5 400Y/D	3 x 400 V~	8,4	7,5	10,1	14,7	44,5	90,6%	60%	1450	Υ/Δ	10mt 7G2,5+3x1

^{* %}S3 indica la percentuale di funzionamento su un ciclo totale compreso tra 10 e 60minuti; 100%S1 indica funzionamento continuo.

	MODELLO	PASSAGGIO	Δ.	В	0	D	C4	CO	DNO	DIMENSI	ONE FLANC	GIA EN 109	2-1 PN16	DIME	NSIONI IME	BALLO	PES0
	MODELLO	LIBER0	A	В	U	ט	S1	S3	DN2	DN1	М	Н	N° FORI	L/A	L/B	Н	Kg
ı	KC 150 30.4 T5 400D	100	775	544	435	128	568	220	150	150	285	240	8	1030	530	728	193
ı	KC 150 40.4 T5 400D	100	775	544	435	128	568	220	150	150	285	240	8	1030	530	728	193
ı	KC 150 55.4 T5 400Y/D	100	870	540	460	110	660	250	150	150	285	240	8	1030	530	728	240
ı	KC 150 75.4 T5 400Y/D	100	870	540	460	110	660	250	150	150	285	240	8	1030	530	728	242



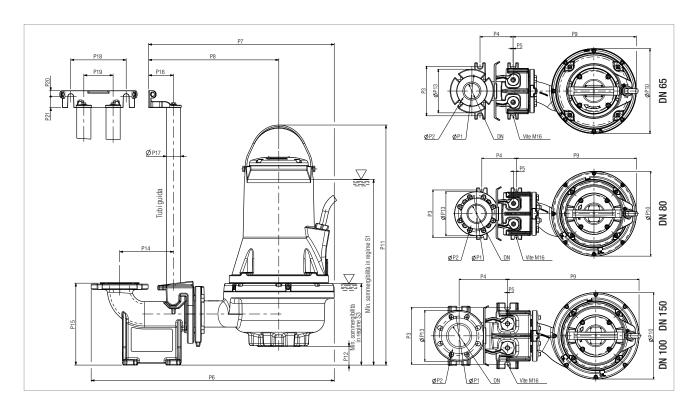
FK - BASAMENTI

I basamenti per installazione libera consentono un rapido posizionamento della pompa nella vasca e garantiscono un'elevata stabilità grazie ad un'ampia superficie d'appoggio.

DESCR	RIZIONE	CARATTERISTICHE GENERALI	FKC 65	FKV	FKC	FKC 65	DIME	NSIONE IME	BALLO	PES0
DESCR	NIZIONE	GANATTENISTICITE GENERALI		65/80	80/100	100/150	L/A	L/B	Н	Kg
8	BASAMENTO DI SOSTEGNO Ø325 FK	FN 0 11 000	Х							10,5
	BASAMENTO DI SOSTEGNO Ø330 FK	- EN GJL200 - Viteria INOX A2 - Vemiciatura Bicomponente		Х			360	360	160	10,5
	BASAMENTO DI SOSTEGNO Ø355 FK	verniciatara bicomponente			Х	x fino a 2.2kW				11,4
8	BASAMENTO DI SOSTEGNO Ø400 FK	- Acciaio Zincato a caldo - Viteria INOX A2				x oltre 2.2kW	500	500	180	10,3

MODELLO	D4	DO.	DO.	D4	DE.	C1	00	DIM	ENSIONE FLANC	GIA EN 1092-1 F	N16
MODELLO	R1	R2	R3	R4	R5	S1	S3	DN1	M	Н	N° FORI
FKV 65 11.4 T5 400D	790	18	128	330	280	643	334	65	185	145	4
FKV 65 22.2 T5 400D	790	18	128	330	280	643	334	65	185	145	4
FKV 65 30.2 T5 400D	790	18	128	330	280	643	334	65	185	145	4
FKV 65 40.2 T5 400D	848	18	128	330	280	713	373	65	185	145	4
FKV 80 11.4 T5 400D	814	18	128	330	280	668	358	80	200	160	8
FKV 80 15.4 T5 400D	814	18	128	330	280	668	358	80	200	160	8
FKV 80 22.4 T5 400D	814	18	128	330	280	668	358	80	200	160	8
FKV 80 40.4 T5 400D	877	18	128	330	280	703	363	80	200	160	8
FKV 80 40.2 T5 400D	875	18	128	330	280	703	363	80	200	160	8
FKV 80 60.2 T5 400Y/D	875	18	128	330	280	703	363	80	200	160	8
FKV 80 75.2 T5 400Y/D	875	18	128	330	280	703	363	80	200	160	8
FKV 80 92.2 T5 400Y/D	991	18	128	330	280	778	368	80	200	160	8
FKV 80 110.2 T5 400Y/D	991	18	128	330	280	778	368	80	200	160	8
FKV 100 30.4 T5 400D	890	19	130	355	300	715	375	100	230	180	8
FKV 100 40.4 T5 400D	890	19	130	355	300	715	375	100	230	180	8
FKV 100 55.4 T5 400Y/D	1013	19	130	355	300	800	390	100	230	180	8
FKV 100 75.4 T5 400Y/D	1013	19	130	355	300	800	390	100	230	180	8
FKC 65 22.2 T5 400D	750	19	130	325	270	600	290	65	185	145	4
FKC 65 30.2 T5 400D	750	19	130	325	270	600	290	65	185	145	4
FKC 80 15.4 T5 400D	787	19	130	355	300	640	330	80	200	160	8
FKC 80 22.4 T5 400D	787	19	130	355	300	640	330	80	200	160	8
FKC 80 30.4 T5 400D	879	19	130	355	300	692	365	80	200	160	8
FKC 80 40.4 T5 400D	879	19	130	355	300	692	365	80	200	160	8
FKC 80 55.4 T5 400Y/D	879	19	130	355	300	692	365	80	200	160	8
FKC 80 75.4 T5 400Y/D	879	19	130	355	300	692	365	80	200	160	8
FKC 100 15.4 T5 400D	787	19	130	355	300	640	330	100	224	180	8
FKC 100 22.4 T5 400D	787	19	130	355	300	640	330	100	224	180	8
FKC 100 30.4 T5 400D	-	-	-	-	-	-	-	100	224	180	8
FKC 100 40.4 T5 400D	-	-	-	-	-	-	-	100	224	180	8
FKC 100 55.4 T5 400Y/D	-	-	-	-	-	-	-	100	224	180	8
FKC 100 75.4 T5 400Y/D	-	-	-	-	-	-	-	100	224	180	8
FKC 100 30.4 T5 400D	-	-	-	-	-	-	-	150	285	240	8
FKC 150 40.4 T5 400D	-	-	-	-	-	-	-	150	285	240	8
FKC 150 55.4 T5 400Y/D	-	-	-	-	-	-	-	150	285	240	8
FKC 150 75.4 T5 400Y/D	-	-	-	-	-	-	-	150	285	240	8

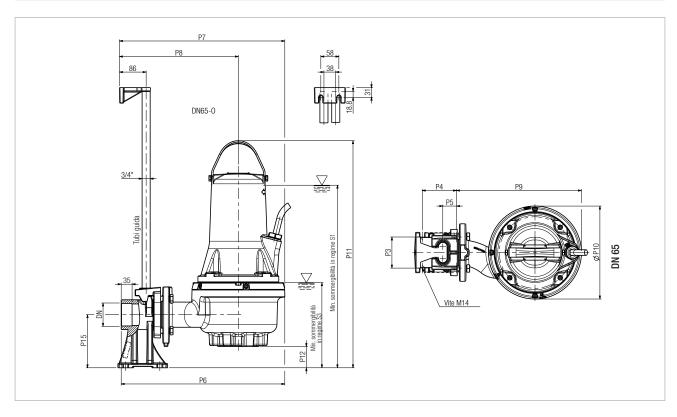
FK - DISPOSITIVO DI ACCOPPIAMENTO A MANDATA VERTICALE DA-V (DN65 ÷ DN150)


I dispositivi di accoppiamento per installazione fissa facilitano la salita e discesa della pompa nella vasca. Sono completi di tutti i componenti necessari per l'installazione fatta eccezione dei tubi guida.

	DESCRIZIONE	CARATTERISTICHE	FKV - FKC	FKV - FKC	FKV - FKC	FKC	DIMEN	SIONE IM	BALLO	PES0
	DESONIZIONE	GENERALI	65	80	100	150	L/A	L/B	Н	Kg
	DA-V65 DISPOSITIVO DI ACCOPPIAMENTO DN65	EN GJL200	Х							25
6	DA-V80 DISPOSITIVO DI ACCOPPIAMENTO DN80	- Viteria INOX A2		Х			599	399	557	31,5
	DA-V100 DISPOSITIVO DI ACCOPPIAMENTO DN100	- Verniciatura Bicomponente			Х		599	299	337	60
	DA-V150 DISPOSITIVO DI ACCOPPIAMENTO DN150	- Guarnizione Non				Х				96

MODELLO	DN	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	S1	S3
FKV 65 11.4 T5 400D	65	145	4xø18	210	140	1	730	543	394	463	300	725	63	185	175	266	81	1" 1/2	180	95	19	36	578	269
FKV 65 22.2 T5 400D	65	145	4xø18	210	140	1	730	543	394	463	300	725	63	185	175	266	81	1" 1/2	180	95	19	36	578	269
FKV 65 30.2 T5 400D	65	145	4xø18	210	140	1	730	543	394	463	300	725	63	185	175	266	81	1" 1/2	180	95	19	36	578	269
FKV 65 40.2 T5 400D	65	145	4xø18	210	140	1	790	603	423	523	360	780	60	185	175	266	81	1" 1/2	180	95	19	36	645	305
FKV 80 11.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	762	570	402	489	336	777	91	205	171	345	81	1" 1/2	180	95	19	36	631	321
FKV 80 15.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	762	570	402	489	336	777	91	205	171	345	81	1" 1/2	180	95	19	36	631	321
FKV 80 22.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	762	570	402	489	336	777	91	205	171	345	81	1" 1/2	180	95	19	36	631	321
FKV 80 40.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	813	620	427	527	386	842	91	205	171	345	81	1" 1/2	180	95	19	36	666	326
FKV 80 40.2 T5 400D	80	150+160	4xø19+8xø18	220	160	13	809	617	437	523	360	843	96	205	171	345	81	1" 1/2	180	95	19	36	671	331
FKV 80 60.2 T5 400Y/D	80	150+160	4xø19+8xø18	220	160	13	809	617	437	523	360	843	96	205	171	345	81	1" 1/2	180	95	19	36	671	331
FKV 80 75.2 T5 400Y/D	80	150+160	4xø19+8xø18	220	160	13	809	617	437	523	360	843	96	205	171	345	81	1" 1/2	180	95	19	36	671	331
FKV 80 92.2 T5 400Y/D	80	150+160	4xø19+8xø18	220	160	13	842	650	454	556	390	940	77	205	171	345	81	1" 1/2	180	95	19	36	727	317
FKV 80 110.2 T5 400Y/D	80	150+160	4xø19+8xø18	220	160	13	842	650	454	556	390	940	77	205	171	345	81	1" 1/2	180	95	19	36	727	317
FKV 100 30.4 T5 400D	100	180	8xø18	260	220	0	900	675	495	565	360	866	106	230	220	413	110	2"	200	110	20	35	691	351
FKV 100 40.4 T5 400D	100	180	8xø18	260	220	0	900	675	495	565	360	866	106	230	220	413	110	2"	200	110	20	35	691	351
FKV 100 55.4 T5 400Y/D	100	180	8xø18	260	220	0	934	708	512	597	390	979	96	230	220	413	110	2"	200	110	20	35	766	356
FKV 100 75.4 T5 400Y/D	100	180	8xø18	260	220	0	934	708	512	597	390	979	96	230	220	413	110	2"	200	110	20	35	766	356

MODELLO	DN	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	S1	S3
FKC 65 22.2 T5 400D	65	145	4xø18	210	140	1	700	512	363	431	300	720	100	185	175	266	81	1" 1/2	180	95	19	36	578	270
FKC 65 30.2 T5 400D	65	145	4xø18	210	140	1	700	512	363	431	300	720	100	185	175	266	81	1" 1/2	180	95	19	36	578	270
FKC 80 15.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	769	594	432	513	355	765	108	205	171	345	81	1" 1/2	180	95	19	36	630	325
FKC 80 22.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	769	594	432	513	355	765	108	205	171	345	81	1" 1/2	180	95	19	36	630	325
FKC 80 30.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	860	666	480	572	384	832	82	205	171	345	81	1" 1/2	180	95	19	36	666	326
FKC 80 40.4 T5 400D	80	150+160	4xø19+8xø18	220	160	13	860	666	480	572	384	832	82	205	171	345	81	1" 1/2	180	95	19	36	671	331
FKC 80 55.4 T5 400Y/D	80	150+160	4xø19+8xø18	220	160	13	883	690	490	596	407	940	82	205	171	345	81	1" 1/2	180	95	19	36	730	320
FKC 80 75.4 T5 400Y/D	80	150+160	4xø19+8xø18	220	160	13	883	690	490	596	407	940	82	205	171	345	81	1" 1/2	180	95	19	36	730	320
FKC 100 15.4 T5 400D	100	180+190	8xø18	230	220	0	876	652	490	542	355	805	148	230	220	413	110	2	200	110	20	35	800	350
FKC 100 22.4 T5 400D	100	180+190	8xø18	230	220	0	876	652	490	542	355	805	148	230	220	413	110	2	200	110	20	35	800	350
FKC 100 30.4 T5 400D	100	180	8xø18	260	220	0	990	762	546	652	430	885	125	230	220	413	110	2"	200	110	20	35	691	351
FKC 100 40.4 T5 400D	100	180	8xø18	260	220	0	990	762	546	652	430	885	125	230	220	413	110	2"	200	110	20	35	691	351
FKC 100 55.4 T5 400Y/D	100	180	8xø18	260	220	0	984	759	533	649	445	995	125	230	220	413	110	2"	200	110	20	35	785	375
FKC 100 75.4 T5 400Y/D	100	180	8xø18	260	220	0	984	759	533	649	445	995	125	230	220	413	110	2"	200	110	20	35	785	375
FKC 150 30.4 T5 400D	150	240	8xø23	300	280	0	1095	780	563	670	435	922	165	290	280	450	110	2"	200	110	20	35	735	407
FKC 150 40.4 T5 400D	150	240	8xø23	300	280	0	1095	780	563	670	435	922	165	290	280	450	110	2"	200	110	20	35	735	407
FKC 150 55.4 T5 400Y/D	150	240	8xø23	300	280	0	1095	781	548	671	458	1035	165	290	280	450	110	2"	200	110	20	35	820	410
FKC 150 75.4 T5 400Y/D	150	240	8xø23	300	280	0	1095	781	548	671	458	1035	165	290	280	450	110	2"	200	110	20	35	820	410



FK - DISPOSITIVO DI ACCOPPIAMENTO A MANDATA ORIZZONTALE DA-0 (DN65)

I dispositivi di accoppiamento per installazione fissa facilitano la salita e discesa della pompa nella vasca. Sono completi di tutti i componenti necessari per l'installazione fatta eccezione dei tubi guida.

DEC	CRIZIONE	CARATTERISTICHE	FKV - FKC	FKV - FKC	FKV - FKC	FKC	DIME	NSIONE IME	BALLO	PES0
DES	OUNIZIUNE	GENERALI	65	80	100	150	L/A	L/B	Н	Kg
	DA-065 DISPOSITIVO DI ACCOPPIAMENTO Orizzontale DN65	- EN GJL200 - Viteria INOX A2 - Verniciatura Bicomponente	x				160	180	240	12,5

MODELLO	DN	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P15	S1	S 3
FKV 65 11.4 T5 400D	Rp 2" 1/2	100	110	44	526	532	382	402	300	730	68	171	583	274
FKV 65 22.2 T5 400D	Rp 2" 1/2	100	110	44	526	532	382	402	300	730	68	171	583	274
FKV 65 30.2 T5 400D	Rp 2" 1/2	100	110	44	526	532	382	402	300	730	68	171	583	274
FKV 65 40.2 T5 400D	Rp 2" 1/2	100	110	44	526	532	382	402	300	730	68	171	650	310
FKC 65 22.2 T5 400D	Rp 2" 1/2	100	110	44	495	490	340	371	300	725	105	171	580	275
FKC 65 30.2 T5 400D	Rp 2" 1/2	100	110	44	495	490	340	371	300	725	105	171	580	275

FK - ABBINAMENTO QUADRO/POMPA

					QUADRO E	D 1 POMPA	QUADRO E	D 2 POMPE	QUADRO E	D 3 POMPE		RONICO
MODELLO POMPA	P1 MAX	KW	HP	In A	CODICE QUADRO	MODELLO QUADRO	CODICE QUADRO	MODELLO QUADRO	CODICE QUADRO	MODELLO QUADRO	QUADRO EBOX PLUS	2 POMPE NGPANEL
FKV 65 11.4 T5 400D	1,3	1,1	1,5	3,3	108320340	ED1,5T	108320450	E2D3T	108330450	E3D4,5T	•	•
FKV 65 22.2 T5 400D	2,5	2,2	3,0	4,8	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	•	•
FKV 65 30.2 T5 400D	3,3	3,0	4,0	5,7	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	•	•
FKV 65 40.2 T5 400D	4,6	4,0	5,5	7,5	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	•	•
FKV 80 11.4 T5 400D	1,3	1,1	1,5	3,5	108320340	ED1,5T	108320450	E2D3T	108330450	E3D4,5T	•	•
FKV 80 15.4 T5 400D	1,8	1,5	2,0	3,8	108320340	ED1,5T	108320450	E2D3T	108330450	E3D4,5T	•	•
FKV 80 22.4 T5 400D	2,5	2,2	3,0	4,7	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	•	•
FKV 80 40.4 T5 400D	4,5	4,0	5,5	8,6	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	•	•
FKV 80 40.2 T5 400D	4,6	4,0	5,5	7,7	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	•	•
FKV 80 60.2 T5 400Y/D	6,9	6,0	8,2	11,7	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKV 80 75.2 T5 400Y/D	8,3	7,5	10,2	13,7	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKV 80 92.2 T5 400Y/D	10,2	9,2	12,5	18,0	60170075	ED15T SD	60170065	E2D30T SD	60170072	E3D45T SD		
FKV 80 110.2 T5 400Y/D	12,1	11,0	15,0	21,0	60170075	ED15T SD	60170065	E2D30T SD	60170072	E3D45T SD		
FKV 100 30.4 T5 400D	3,5	3,0	4,0	8,0	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	•	•
FKV 100 40.4 T5 400D	4,5	4,0	5,5	8,9	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	•	•
FKV 100 55.4 T5 400Y/D	6,2	5,5	7,5	11,3	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKV 100 75.4 T5 400Y/D	8,3	7,5	10,0	14,3	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKC 65 22.2 T5 400D	2,5	2,2	3,0	4,8	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	Х	Х
FKC 65 30.2 T5 400D	3,3	3,0	4,0	5,7	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	Х	Х
FKC 80 15.4 T5 400D	1,8	1,5	2,0	3,8	108320340	ED1,5T	108320450	E2D3T	108330450	E3D4,5T	Х	Х
FKC 80 22.4 T5 400D	2,5	2,2	3,0	4,7	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	Х	Х
FKC 80 30.4 T5 400D	3,5	3,0	4,0	8,0	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	Х	Х
FKC 80 40.4 T5 400D	4,5	4,0	5,5	8,9	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	Х	Х
FKC 80 55.4 T5 400Y/D	6,2	5,5	7,5	12	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKC 80 75.4 T5 400Y/D	8,3	7,5	10,0	14,3	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKC 100 15.4 T5 400D	1,8	1,5	2,0	3,8	108320340	ED1,5T	108320450	E2D3T	108330450	E3D4,5T	Х	Х
FKC 100 22.4 T5 400D	2,5	2,2	3,0	4,7	108320350	ED2,5T	108320460	E2D5T	60115082	E3D7,5T	Х	Х
FKC 100 30.4 T5 400D	3,5	3,0	4,0	8,0	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	Х	Х
FKC 100 40.4 T5 400D	4,5	4,0	5,5	8,9	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	Х	Х
FKC 100 55.4 T5 400Y/D	6,2	5,5	7,5	11,3	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKC 100 75.4 T5 400Y/D	8,3	7,5	10,0	14,3	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKC 150 40.4 T5 400D	4,5	4,0	5,5	8,9	60170054	ED4T	60170062	E2D8T	60170069	E3D12T	Х	Х
FKC 150 55.4 T5 400Y/D	6,2	5,5	7,5	11,3	108320840	ED7,5T SD	60170047	E2D15T SD	60170051	E3D22,5T SD		
FKC 150 75.4 T5 400Y/D	8,3	7,5	10,0	14,3	108320840	ED7,5T SD	60170047	E2D15TSD	60170051	E3D22,5T SD		

GENIX

STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

DATI TECNICI

Campo di temperatura del liquido:

da 0°C a +50°C.

Liquido pompato:

acque di scarico come normato da EN 12050-3.

Omologazioni di terze parti: VDE-GS, LGA, VDE-EMC.

Capacità: omologato per sciacquoni da 6 e 9 litri secondo quanto normato

da EN12050-3.

Classe di protezione: IP44.

APPLICAZIONI

Il suo impiego è indispensabile nei casi in cui le acque di rifiuto di wc, docce, lavabi o bidet non possano essere espulse per gravità. Queste stazioni di sollevamento collettano e pompano le acque di scarico attraverso un tubo di piccole dimensioni fino allo scarico per caduta più vicino.

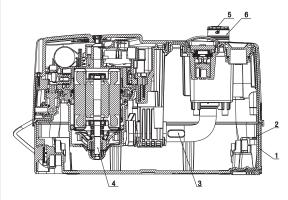
I modelli GENIX sono caratterizzati dall'attacco per lo scarico del WC frontale. La versione GENIX WL si differenzia per dall'attacco WC laterale, studiata appositamente per le applicazioni con sanitari sospesi al muro o quando non c'è sufficiente spazio dietro il WC. Nel modello 110 è possibile collegare, oltre al WC, un'ulteriore utenza come ad esempio un lavandino. Nel modello 130, oltre al WC, tre ulteriori utenze, come lavandino, doccia, bidet o vasca da bagno. I modelli proposti si caratterizzano per la silenziosità nel funzionamento, ulteriormente migliorata nelle versioni Comfort. La pompa potente e affidabile, e il dispositivo trituratore in acciaio inossidabile placcato in nickel rendono il prodotto durevole e praticamente esente da manutenzione ordinaria. Estremamente agevole la manutenzione straordinaria in caso di blocco, con la possibilità di accedere al gruppo motore dall'esterno senza necessità di rimuovere il prodotto, garantendo una manutenzione pulita e priva di inconvenienti. Il kit di installazione è completo di connessioni adattabili a diversi diametri di tubazione con attacco rapido e valvole di non ritorno integrate.

Disponibili come accessori un allarme acustico antiallagamento, e un tubo adattatore di prolunga, per adattare il GENIX a installazioni pre-esistenti.

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

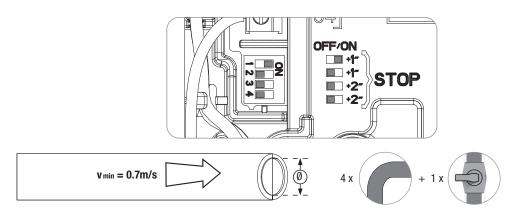
Vasca in polipropilene caricato al bario 30%. Nella versione insonorizzata, insonorizzante in polipropilene caricato al bario 70%. Girante in PPO 30% fibra di vetro. Albero motore in acciaio inossidabile.

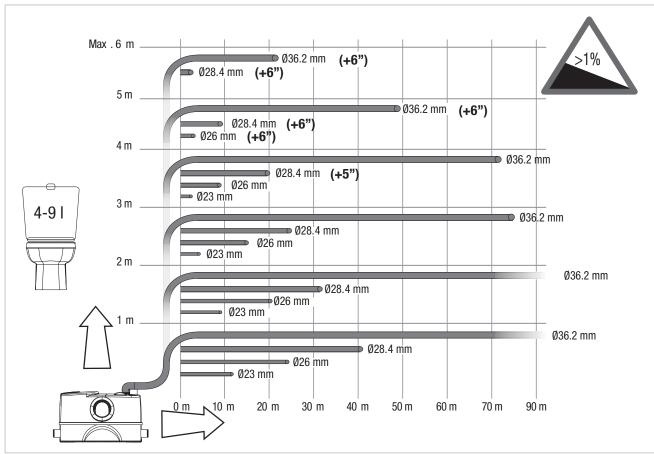
Trituratore in acciaio inox nichelato.

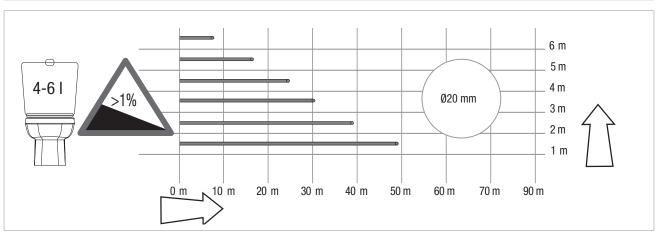

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

Di tipo asincrono in acciaio inox. Albero e calotta in acciaio inox.

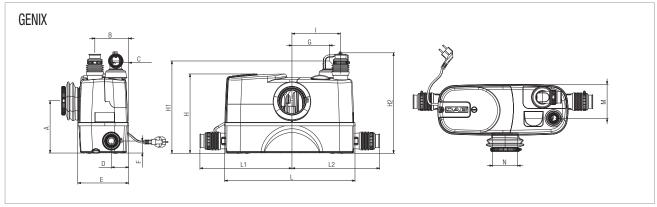
Protezione termica anti-surriscaldamento.

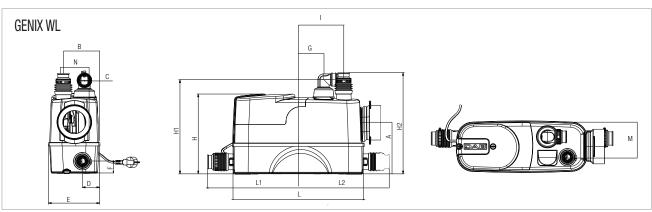

Albero motore anti-usura.


N°	PARTICOLARI		MATERIALI
1	VASCA		PP 15% BARIO
2	INSONORIZZANTE		PP 70% BARIO
3	TUB0		EPDM
		MOTORE-CALOTTA	AISI 304
		MOTORE-ALBERO	AISI 416
		GIRANTE	PPO 30% FIBRA VETRO
		TRITURATORE FISSO	AISI 304
_	GENIX COMFORT	DADO GIRANTE	PPO 30% FIBRA VETRO
4	FLANGE GROUP V230-50Hz	TRITURATORE MOBILE	AISI 420
		FLANGIA MOTORE	PP 30% FIBRA VETRO
		CORPO POMPA	PP 30% FIBRA VETRO
		ANELLO DI CENTRAGGIO	PP 30% FIBRA VETRO
		VOLUTA	PP 30% FIBRA VETRO
		CORPO VALVOLA DI NON RITORNO	PP 30 FIBRA VETRO
5	GRUPPO VALVOLA	VALVOLA CLAPET OVALE	EPDM
		OR -3118 29.82 X 2.62	NBR
6	TUBO MANDATA		PP 30 FIBRA VETRO



ISTRUZIONI PER L'INSTALLAZIONE





GENIX - STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

Campo di temperatura del liquido pompato: da 0°C a +50°C

		DATI ELETTRICI													
MODELLO	ALIMENTAZ.	P1 MAX	P2 NON	In											
	50 Hz	kW	kW	HP	A										
GENIX 110	1 x 230 V ~	0,49	0,32	0,44	2,3										
GENIX 130	1 x 230 V ~	0,49	0,32	0,44	2,3										
GENIX COMFORT 110	1 x 230 V ~	0,49	0,32	0,44	2,3										
GENIX COMFORT 130	1 x 230 V ~	0,49	0,32	0,44	2,3										
GENIX WL 110	1 x 230 V ~	0,49	0,32	0,44	2,3										
GENIX WL 130	1 x 230 V ~	0,49	0,32	0,44	2,3										

MODELLO		Λ .	В	C	D	Е	г	G	Н	H1	H2			L1	L2	M	N	DIMI	ENSIONI IMBA	ALLO	VOLUME	PES0
IVIODELLO		A	D	U	ע		[u	П	пі	П	ı	L	LI	LZ	M	IN	L/A	L/B	Н	(mc)	Kg
GENIX 110	1	183	118	45	/	178	/	178	277	323	351	170	456	/	/	118	87	538	227	426	0,0520	10
GENIX 130	1	183	118	45	60	178	42	178	277	323	351	170	456	322	307	118	87	538	227	426	0,0520	10,3
GENIX COMFORT	10	183	118	45	/	178	/	178	277	323	351	170	456	/	/	118	87	538	227	426	0,0520	11,2
GENIX COMFORT	30	183	118	45	60	178	42	178	277	323	351	170	456	322	307	118	87	538	227	426	0,0520	11,7
GENIX WL 110	1	183	125	56	/	178	/	80	277	322	346	150	456	/	/	125	87	538	227	426	0,052	10
GENIX WL 130	1	183	125	56	60	178	42	80	277	322	346	150	456	322	307	125	87	538	227	426	0,052	10,3

GENIX VT

STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

DATI TECNICI

Campo di temperatura del liquido:

da 0°C a +75 °C fino a 90°C per 30 min.

Liquido pompato:

acque di scarico come normato da EN 12050-3.

Omologazioni di terze parti: LGA

Campo di funzionamento: da 1 a 90m3/h con prevalenza fino a 8 metri

Classe di protezione: IP44.

APPLICAZIONI

Il suo impiego è indispensabile nei casi in cui le acque di scarico di lavelli, docce, lavatrici o lavastoviglie non possano essere espulse per gravità. Queste stazioni di sollevamento collettano e pompano le acque di scarico attraverso un tubo di piccole dimensioni fino allo scarico per caduta più vicino. Nel modello 110 è possibile collegare un'utenza con scarico alto come ad esempio un lavandino. Nel modello 130, fino a tre utenze, anche con scarico basso come doccia, bidet o vasca da bagno. I modelli proposti si caratterizzano per la silenziosità nel funzionamento e affidabilità, garantita da un motore potente che permette di lavorare anche ad alte temperature, fino a 90°C.

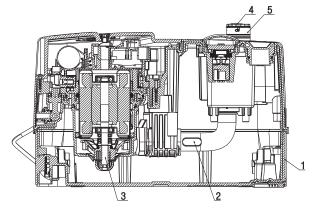
Estremamente agevole la manutenzione straordinaria in caso di blocco, con la possibilità di accedere al gruppo motore dall'esterno senza necessità di rimuovere il prodotto, garantendo una manutenzione, pulita e priva di inconvenienti.

Il kit di installazione è completo di connessioni adattabili a diversi diametri di tubazione con attacco rapido e valvole di non ritorno integrate.

Disponibili come accessori un allarme acustico antiallagamento, e un tubo adattatore di prolunga, per adattare il GENIX a installazioni pre-esistenti.

CARATTERISTICHE COSTRUTTIVE DELLA POMPA

Vasca in polipropilene caricato al bario 30%. Girante in PPO 30% fibra di vetro. Albero motore in acciaio inossidabile.

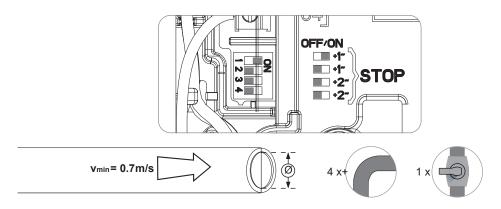

CARATTERISTICHE COSTRUTTIVE DEL MOTORE

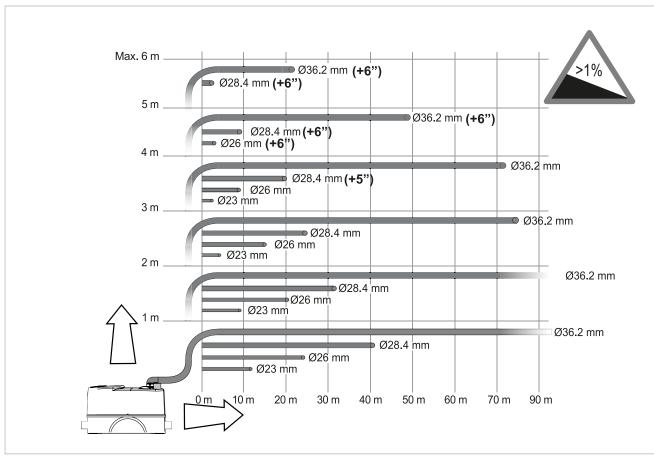
Di tipo asincrono in acciaio inox. Albero e calotta in acciaio inox.

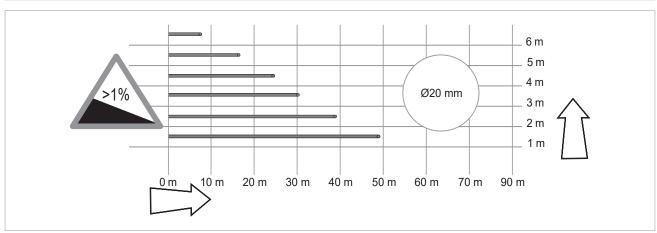
Protezione termica anti-surriscaldamento.

Albero motore anti-usura.

N°	PARTICOLARI		MATERIALI
1	VASCA		PP 15% BARIO
2	TUB0		EPDM
		MOTORE-CALOTTA	AISI 304
		MOTORE-ALBERO	AISI 416
		GIRANTE	PPO 30% FIBRA VETRO
3	GENIX VT FLANGE GROUP V230-50Hz	DADO GIRANTE	PPO 30% FIBRA VETRO
3		FLANGIA MOTORE	PP 30% FIBRA VETRO
		CORPO POMPA	PP 30% FIBRA VETRO
		ANELLO DI CENTRAGGIO	PP 30% FIBRA VETRO
		VOLUTA	PP 30% FIBRA VETRO
		CORPO VALVOLA DI NON RITORNO	PP 30 FIBRA VETRO
4	GRUPPO VALVOLA	VALVOLA CLAPET OVALE	EPDM
		OR -3118 29.82 X 2.62	NBR
5	TUBO MANDATA		PP 30 FIBRA VETRO

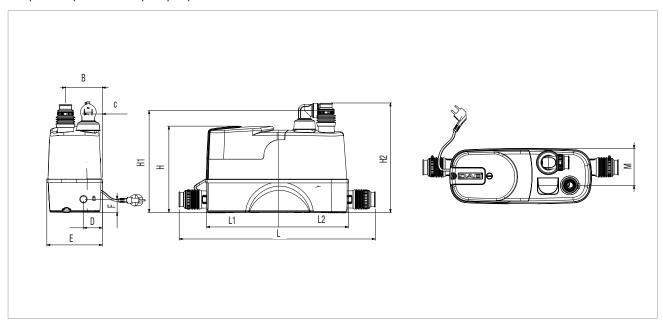





GENIX VT

STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

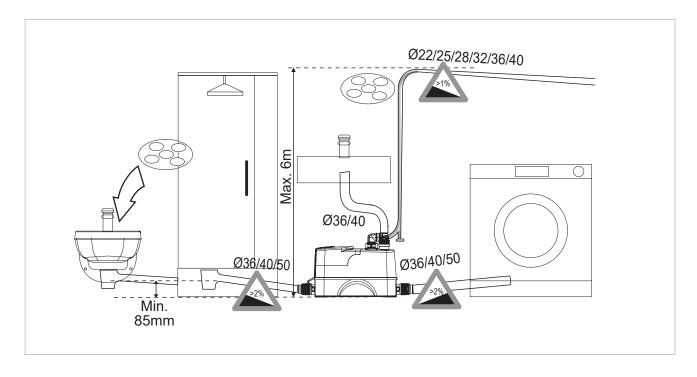
ISTRUZIONI PER L'INSTALLAZIONE

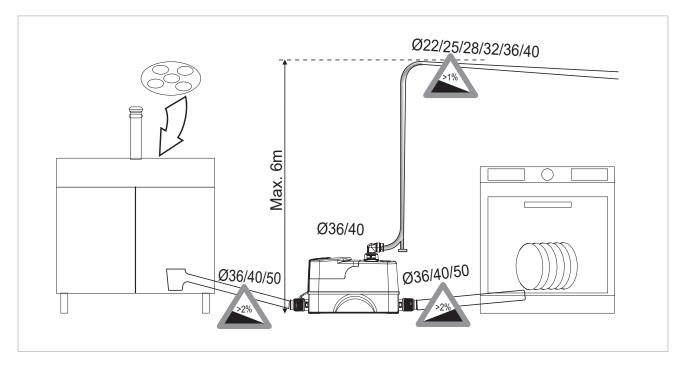


GENIX VT - STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

Campo di temperatura del liquido pompato: da 0°C a +75°C

			DATI ELETTRICI		
MODELLO	ALIMENTAZ.	P1 MAX	P2 NOI	In	
	50 Hz	kW	kW	HP	A
GENIX VT 010	1 x 230 V ~	0,53	0,32	0,44	2,5
GENIX VT 030	1 x 230 V ~	0,53	0,32	0,44	2,5


MODELLO	A B C		C D		С	G	Н	H1		H2 I L L1		14	L2 M		M N	DIME	ENSIONI IMBA	VOLUME	PES0		
MIODELLO	^	D	U	ע	_	'	u	"	""	П	'	-	LI	LZ	IVI	IN	L/A	L/B	Н	(mc)	Kg
GENIX VT 010	183	125	56	/	178	/	80	277	322	346	150	456	/	/	125	/	538	227	426	0,052	10
GENIX VT 030	183	125	56	60	178	42	80	277	322	346	150	456	322	307	125	/	538	227	426	0,052	10,3



GENIX

STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

INSTALLAZIONE

NOVABOX

STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO

DATI TECNICI

Campo di funzionamento:

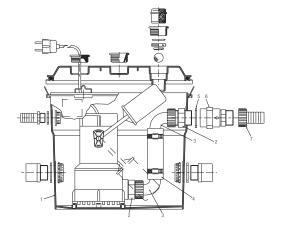
da 1 a 7,2 m³/h con prevalenze fino a 6,9 metri.

Campo di temperatura del liquido:

- + 50° C
- + 90° C per un tempo massimo di 3 min.

Liquido pompato:

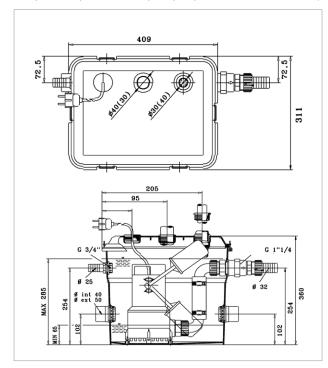
acque di scarico prive di sostanze solide e/o fibrose.

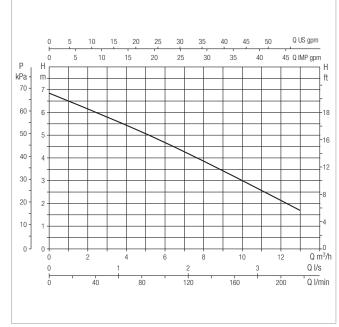

Grado di protezione del motore della pompa: IP 68.

Classe di isolamento del motore: F.

APPLICAZIONI

Stazioni di raccolta e sollevamento automatico di acque di rifiuto domestiche provenienti da vasche da bagno, lavabi, docce e lavatrici situati in seminterrati, o comunque sotto il livello fognario. Sono costituite da un'elettropompa tipo NOVA 300 con 5 metri di cavo di alimentazione e spina montata su una piastra in tecnopolimero, contenitore in tecnopolimero della capacità di 30 litri, una valvola di non ritorno montata sulla mandata. La stazione di sollevamento viene fornita completa di pompa con kit di raccorderia e kit galleggiante a doccia.


N°	PARTICOLARI	MATERIALI
1	VASCA	TECNOPOLIMERO
2	NIPPLO	TECNOPOLIMERO
3	PORTAGOMMA	TECNOPOLIMERO
4	TUB0	GOMMA
5	GUARNIZIONE OR	EPDM
6	VALVOLA NON RITORNO	TECNOPOLIMERO
7	PORTAGOMMA	TECNOPOLIMERO



NOVABOX - STAZIONI AUTOMATICHE DI RACCOLTA E SOLLEVAMENTO PER DRENAGGIO ACQUE REFLUE

Campo di temperatura del liquido pompato: da +50 °C a +90 °C per un tempo massimo di 3 minuti

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

		DATI ELETTRICI													
MODELLO	ALIMENTAZIONE	P1 MAX	P2 NOI	/INALE	In	CONDEN	ISATORE .								
	50 Hz	kW	kW	HP	A	μF	Vc								
NOVABOX 30/300.1M	1 x 220-240 V ~	0,29	0,22	0,3	1,3	8	450								
NOVABOX 30/300.1M-SV	1 x 220-240 V ~	0,29	0,22	0,3	1,3	8	450								

MODELLO	٨	В	С	D	E	F	Н	H1	H2	DIME	NSIONI IME	VOLUME		
WIODELLO	A									L/A	L/B	Н	(mc)	Kg
NOVABOX 30/300.1M	407	309	94	204	314	72	360	100	254	450	330	380	0,056	9,2

FEKABOX 110

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER 1 POMPA

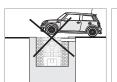
DATI TECNICI

Campo di funzionamento:

da 1 a 24 m³/h con prevalenza fino a 9 metri.

Campo di temperatura del liquido: $+45^{\circ}$ C

Liquido pompato:


acque di rifiuto e scarichi domestici.

Liquidi compatibili con la norma EN12050 2.

Installazione: all'interno di un edificio fissata al pavimento.

Non carrabile e non calpestabile

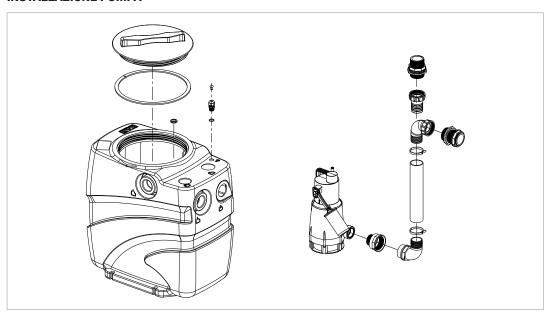
APPLICAZIONI

Stazioni di pompaggio idonee per la raccolta e il rilancio in fognatura di acque di scarico domestiche (grigie e piovane), di seminterrati o garage per una unità abitativa, quando la rete fognaria non può essere raggiunta per gravità. Non compatibile con il sistema d'allarme.

CARATTERISTICHE COSTRUTTIVE

CAPACITÀ: 110 lt **MATERIALI:** LLDPE **NORMATIVA:** 12050-2 CONNESSIONI:

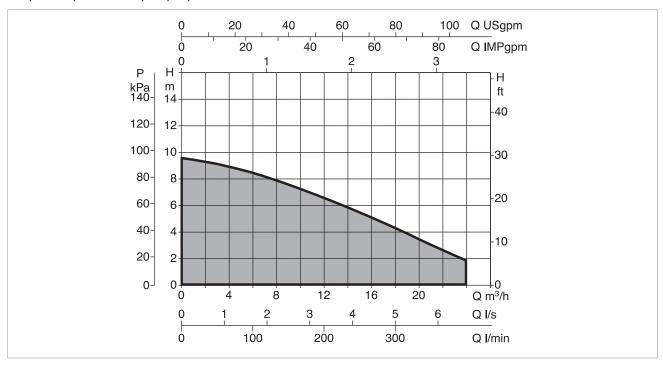
- Ingressi DN 50/110
- Ventilazione DN 50
- Uscita G2" orizzontale o verticale

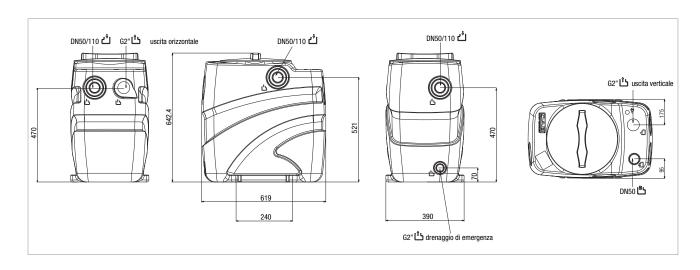

COMPONENTI INCLUSI:

- Kit installazione pompa completo (vedi immagine installazione pompa)
- Pressacavo per singola pompa
- Raccordo 2" F x 1 x 1/4 M per FEKA 600

COMPONENTI ESCLUSI:

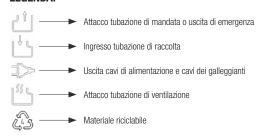
- Pompa: da selezionare secondo le configurazioni possibili
- * non compatibile con il sistema di allarme


INSTALLAZIONE POMPA


FEKABOX 110 - STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE

Campo di temperatura del liquido pompato: +50 °C

CONFIGURAZIONI


MODELLO POMPA	DATI ELETTRICI						
	ALIMENTAZIONE	P1 MAX	P2 NOMINALE		In		
	50 HZ	kW	kW	HP	A		
FEKA 600 M A 40th	1X230 V~	0,68	0,5	0,67	3,1		
FEKA VS 550 M-A	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2		
FEKA VS 750 M-A	1 x 220 V -240 V ~	1,11	0,75	1	5,13		

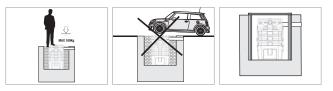
DIMENSIONI E PESI

DII	PES0			
L/A	L/B	Н	Kg	
650	400	665	10,3	

LEGENDA:

FEKABOX 200

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER 1 POMPA


DATI TECNICI

Campo di funzionamento: da 1 a 24 m³/h con prevalenza fino a 15 mt. Liquido pompato: acque freatiche, acque piovane, acqua chiara di rifiuto, acque nere di rifiuto e acque di fiume o lago. Liquidi compatibili con la norma EN12050 1/2

Massima temperatura del liquido: 45°C

Installazione: Fissata a pavimento se all'interno di un edificio. Interrata se all'esterno di un edificio.

Non carrabile, ma calpestabile solo fino a 100 Kg

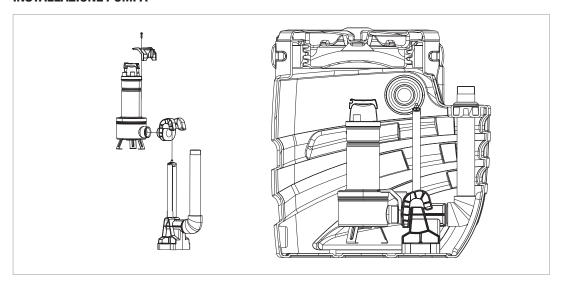
APPLICAZIONI

Stazioni di pompaggio idonee per la raccolta e il rilancio in fognatura di acque di scarico domestiche (reflue, grigie e piovane), di seminterrati o garage per una o più unità abitativa, quando la rete fognaria non può essere raggiunta per gravità.

CARATTERISTICHE COSTRUTTIVE

CAPACITÀ: 200 It **MATERIALI:** LLDPE **NORMATIVA:** 12050-1 **CONNESSIONI:** - Ingressi DN 50/110 - Ventilazione DN 50

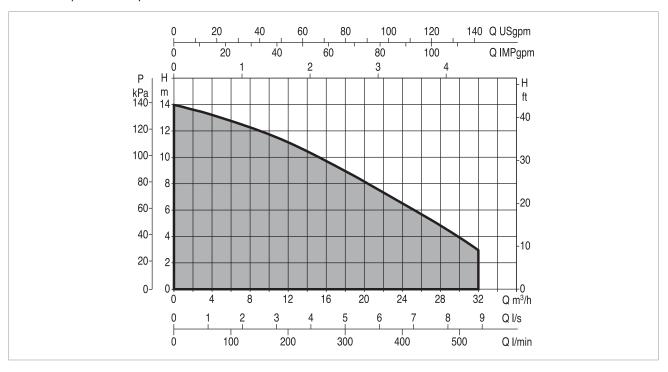
COMPONENTI INCLUSI:


- Uscita G2"

- Dispositivo di sollevamento 2" PP e staffa antirotazionale per FEKA VS e VX
- Pressacavo per singola pompa
- Raccordo 2" F x 1 x 1/4 M per FEKA 600
- Kit fermacavo galleggiante FEKA VS e VX

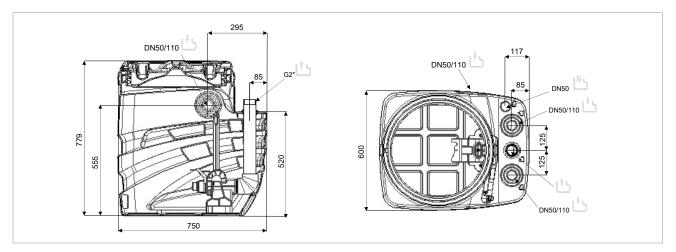
COMPONENTI ESCLUSI:

- Pompa: da selezionare secondo le configurazioni possibili
- Supporto galleggiante d'allarme


INSTALLAZIONE POMPA

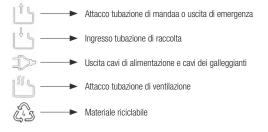
FEKABOX 200 - STAZIONI DI RACCOLTA E SOLLEVAMENTO AUTOMATICO ACQUE REFLUE

Massima temperatura del liquido: 45°C


CONFIGURAZIONI

MODELLO		DA	TI ELETTRICI		
MODELLO POMPA	ALIMENTAZIONE	P1 MAX	P2 N0	MINALE	In
101117	50 HZ	kW	kW	HP	A
FEKA 600 M A	1X230 V~	0,68	0,5	0,67	3,1
FEKA VS 550 MA	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2
FEKA VS 750 MA	1 x 220 V -240 V ~	1,11	0,75	1	5,13
FEKA VS 1000 MA	1 x 220 V -240 V ~	1,46	1	1,36	6,63
FEKA VS 1200 MA	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63
FEKA VS GRINDER 1000 MA	220 x 240V	1,3	1	1,3	6,4 A
FEKA VS GRINDER 1000 M-NA	220 x 240V	1,3	1	1,3	6,2 A
FEKA VS GRINDER 1000 TNA	380 x 415V	1,3	1	1,3	3 A
FEKA FXV 20.07 MA	1x230V	1,4	0,9	1,2	6,4
FEKA FXV 20.11 MA	1x230V	1,7	1,2	1,6	8
FEKA FXV 20.15 MA	1x230V	2,3	1,7	2,3	10,5
FEKA FXC 20.07 MA	1x230V	0,9	0,7	0,9	4,1
FEKA FXC 20.11 MA	1x230V	1,4	1	1,3	6,3
FEKA FXC 20.15 MA	1x230V	2	1,5	2,0	9,1
DRENAG FX 15.07 MA	1x230V	1,1	0,8	1,1	5,1
DRENAG FX 15.11MA	1x230V	1,5	1,2	1,6	6,8
DRENAG FX 15.15 MA	1x230V	2,3	1,8	2,4	10,6
GRINDER FX 15.07 MA	1x230V	1,1	0,8	1,1	5,3
GRINDER FX 15.11 MA	1x230V	1,5	1,1	1,5	6,8
GRINDER FX 15.15 MA	1x230V	2,2	1,6	2,1	9,8

FEKABOX 200 - STAZIONI DI RACCOLTA E SOLLEVAMENTO AUTOMATICO ACQUE REFLUE


Massima temperatura del liquido: 45°C

DIMENSIONI E PESI

MODELLO	DII	DIMENSIONI IMBALLO				
	L/A	L/B	Н	Kg		
FEKABOX 200	750	600	779	23,2		
FEKABOX 200 FX	750	600	779	27		

LEGENDA:

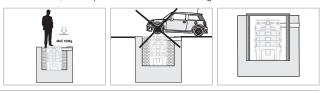
FEKAFOS 280

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER 1 POMPA

DATI TECNICI

Campo di funzionamento:

da 1 a 32 m³/h con prevalenza fino a 23 metri.


Liquido pompato: acque freatiche, acque piovane, acqua chiara di rifiuto, acque nere di rifiuto e acque di fiume o lago. Liquidi compatibili con la norma EN12050 1/2.

Massima temperatura del liquido: 45°C

Installazione: Fissata a pavimento se all'interno di un edificio. Interrata

se all'esterno di un edificio.

Non carrabile, ma calpestabile solo fino a 100 Kg

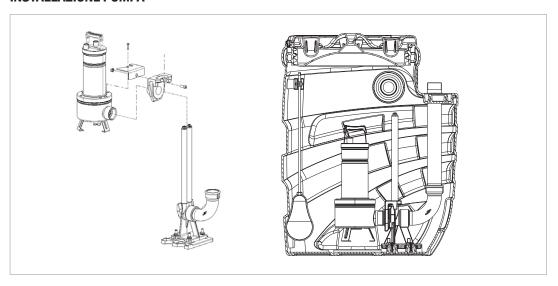
APPLICAZIONI

Stazioni di pompaggio idonee per la raccolta e il rilancio in fognatura di acque di scarico domestiche (reflue, grigie e piovane), di seminterrati o garage per una o più unità abitativa, quando la rete fognaria non può essere raggiunta per gravità.

CARATTERISTICHE COSTRUTTIVE

CAPACITÀ: 280 lt **MATERIALI:** LLDPE **NORMATIVA:** 12050-1 CONNESSIONI: - Ingressi DN 50/110

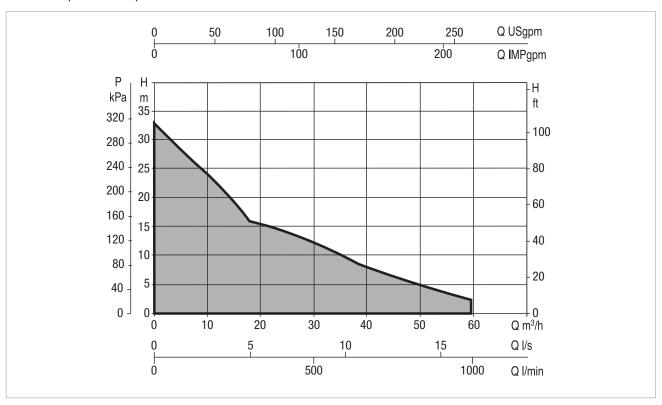
- Ventilazione DN 50
- Uscita G2"


COMPONENTI INCLUSI:

- Dispositivo di sollevamento DSD2" e staffa antirotazionale per FEKA VS e VX
- 4 Pressacavi per singola pompa e galleggianti
- Raccordo 2" F x 1 x 1/4 M per FEKA 600
- Kit fermacavo galleggiante FEKA VS e VX
- 2 Galleggianti e supporto galleggiante d'allarme

COMPONENTI ESCLUSI:

- Pompa: da selezionare secondo le configurazioni possibili
- Quadro: da selezionare secondo le configurazioni possibili
- Galleggiante di allarme troppo pieno


INSTALLAZIONE POMPA

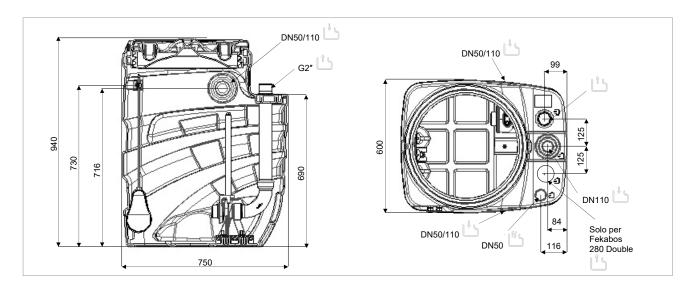
FEKAFOS 280 - STAZIONI DI RACCOLTA E SOLLEVAMENTO AUTOMATICO ACQUE REFLUE

Massima temperatura del liquido: 45°C

CONFIGURAZIONI

MODELLO			DATI ELETTRICI			MODELLO	MODELLO
MODELLO POMPA	ALIMENTAZIONE	P1 MAX	P2 NOI	MINALE	In	QUADRO	QUADRO
1 0111171	50 HZ	kW	kW	HP	А	ELETTRICO	ELETTRONICO
FEKA VS 550 M-NA	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2	ED1M	
FEKA VS 550 T-NA	3 x 400 V ~	0,90	0,55	0,75	1,64	ED1T	
FEKA VS 750 M-NA	1 x 220 V -240 V ~	1,11	0,75	1	5,13	ED1M	
FEKA VS 750 T-NA	3 x 400 V ~	1,02	0,75	1	1,94	ED1T	
FEKA VS 1000 M-NA	1 x 220 V -240 V ~	1,46	1	1,36	6,63	ED1,5M]
FEKA VS 1000 T-NA	3 x 400 V ~	1,37	1	1,36	2,51	ED1,5T	
FEKA VS 1200 M-NA	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63	ED1,5M	
FEKA VS 1200 T-NA	3 x 400 V ~	1,86	1,2	1,6	3,44	ED1,5T]
FEKA VS GRINDER 1000 MA	220 x 240V	1,3	1	1,3	6,4 A	ED1,5 M	
FEKA VS GRINDER 1000 M-NA	220 x 240V	1,3	1	1,3	6,2 A	ED1,5 M	
FEKA VS GRINDER 1000 TNA	380 x 415V	1,3	1	1,3	3 A	ED1,5 T]
FEKA FXV 20.07 MNA*	1x230V	1,4	0,9	1,2	6,4	ED1,5M	
FEKA FXV 20.07 TNA*	3x400V	1,4	0,9	1,2	2,4	ED1,5T	NGPANEL
FEKA FXV 20.11 MNA*	1x230V	1,7	1,2	1,6	8	ED1,5M]
FEKA FXV 20.11 TNA*	3x400V	1,6	1,2	1,6	2,9	ED1,5T	
FEKA FXV 20.15 MNA*	1x230V	2,3	1,7	2,3	10,5	ED2M	
FEKA FXV 20.15 TNA*	3x400V	2,2	1,7	2,3	4	ED2,5T]
FEKA FXV 20.22 TNA*	3x400V	2,9	2,2	2,9	5	ED2,5T	
FEKA FXC 20.07 MNA*	1x230V	0,9	0,7	0,9	4,1	ED1M	
FEKA FXC 20.07 TNA*	3x400V	0,9	0,7	0,9	1,8	ED0,75M	
FEKA FXC 20.11 MNA*	1x230V	1,4	1	1,3	6,3	ED1,5M	
FEKA FXC 20.11 TNA*	3x400V	1,3	1	1,3	2,6	ED1,5T	
FEKA FXC 20.15 MNA*	1x230V	2	1,5	2,0	9,1	ED1,5M	
FEKA FXC 20.15 TNA*	3x400V	1,8	1,5	2,0	3,5	ED1,5T	
FEKA FXC 20.22 TNA*	3x400V	2,8	2,2	2,9	4,9	ED2,5T	

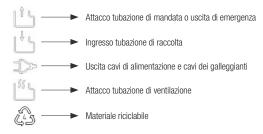
^{*}Disponibile in versione Atex



FEKAFOS 280 - STAZIONI DI RACCOLTA E SOLLEVAMENTO AUTOMATICO ACQUE REFLUE

Massima temperatura del liquido: 45°C

MODELLO			MODELLO	MODELLO			
MODELLO POMPA	ALIMENTAZIONE	P1 MAX	P2 N0	MINALE	In	QUADRO	QUADRO
7 0111171	50 HZ	kW	kW	HP	A	ELETTRICO	ELETTRONICO
DRENAG FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,1	ED1,5M	
DRENAG FX 15.07 TNA*	3x400V	1	0,8	1,1	2,1	ED1T	
DRENAG FX 15.11 MNA*	1x230V	1,5	1,2	1,6	6,8	ED1,5M	
DRENAG FX 15.11 TNA*	3x400V	1,5	1,2	1,6	2,8	ED1,5T	
DRENAG FX 15.15 MNA*	1x230V	2,3	1,8	2,4	10,6	ED2M	
DRENAG FX 15.15 TNA*	3x400V	2,5	1,8	2,4	4,3	ED2,5T	
DRENAG FX 15.22 TNA*	3x400V	3,1	2,3	3,1	5,2	ED2,5T	NGPANEL
GRINDER FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,3	ED1M	NGPANEL
GRINDER FX 15.07 TNA*	3x400V	1	0,8	1,1	2	ED1T	
GRINDER FX 15.11 MNA*	1x230V	1,5	1,1	1,5	6,8	ED1,5M	
GRINDER FX 15.11 TNA*	3x400V	1,5	1,1	1,5	2,8	ED1,5T	
GRINDER FX 15.15 MNA*	1x230V	2,2	1,6	2,1	9,8	ED2M	
GRINDER FX 15.15 TNA*	3x400V	2,1	1,6	2,1	3,8	ED1,5T	
GRINDER FX 15.22 TNA*	3x400V	2,6	2,1	2,8	4,7	ED2,5T	


^{*}Disponibile in versione Atex

DIMENSIONI E PESI

DII	MENSIONI IMBAL	LO	PES0	
L/A	L/B	Н	Kg	
750	600	940	40,5	

LEGENDA:

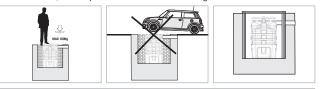
FEKAFOS 280 DOUBLE

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER 2 POMPE

DATI TECNICI

Campo di funzionamento:

da 1 a 32 m³/h con prevalenza fino a 23 metri.


Liquido pompato: acque freatiche, acque piovane, acqua chiara di

rifiuto, acque nere di rifiuto e acque di fiume o lago. Liquidi compatibili con la norma EN12050 1/2. **Massima temperatura del liquido:** 45°C

Installazione: Fissata a pavimento se all'interno di un edificio. Interrata

se all'esterno di un edificio.

Non carrabile, ma calpestabile solo fino a 100 Kg

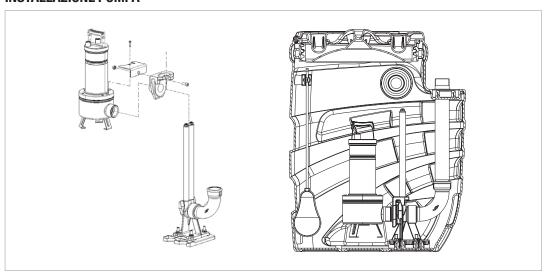
APPLICAZIONI

Stazioni di pompaggio idonee per la raccolta e il rilancio in fognatura di acque di scarico domestiche (reflue, grigie e piovane), di seminterrati o garage per una o più unità abitativa, quando la rete fognaria non può essere raggiunta per gravità.

CARATTERISTICHE COSTRUTTIVE

CAPACITÀ: 280 It MATERIALI: LLDPE NORMATIVA: 12050-1 CONNESSIONI: - Ingressi DN 50/110 - Ventilazione DN 50

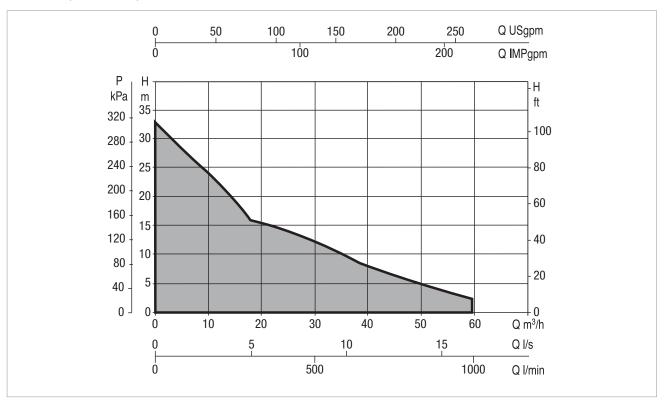
- Ventilazione DN - Uscita G2"


COMPONENTI INCLUSI:

- 2 Dispositivi di sollevamento DSD2"
 e staffa antirotazionale per FEKA VS e VX
- 6 Pressacavi per doppia pompa e galleggianti
- 2 Kit fermacavo galleggiante FEKA VS e VX
- 3 Galleggianti e supporto galleggiante d'allarme

COMPONENTI ESCLUSI:

- Pompa: da selezionare secondo le configurazioni possibili
- Quadro: da selezionare secondo le configurazioni possibili
- Galleggiante di allarme troppo pieno


INSTALLAZIONE POMPA

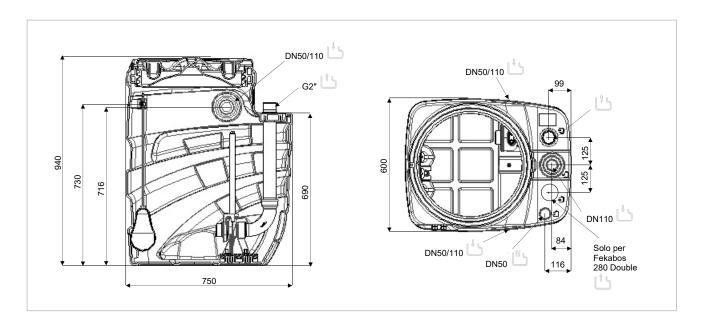
FEKAFOS 280 DOUBLE - STAZIONI DI RACCOLTA E SOLLEVAMENTO AUTOMATICO ACQUE REFLUE

Massima temperatura del liquido: 45°C

CONFIGURAZIONI

MODELLO			DATI ELETTRICI			MODELLO	MODELLO
MODELLO POMPA	ALIMENTAZIONE	P1 MAX	P2 NC	MINALE	ln	QUADRO	QUADRO
TOMITA	50 HZ	kW	kW	HP	A	ELETTRICO	ELETTRONICO
FEKA VS 550 M-NA	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2	E2D2M	
FEKA VS 550 T-NA	3 x 400 V ~	0,90	0,55	0,75	1,64	E2D2T	
FEKA VS 750 M-NA	1 x 220 V -240 V ~	1,11	0,75	1	5,13	E2D2M	
FEKA VS 750 T-NA	3 x 400 V ~	1,02	0,75	1	1,94	E2D2T	
FEKA VS 1000 M-NA	1 x 220 V -240 V ~	1,46	1	1,36	6,63	E2D3M	
FEKA VS 1000 T-NA	3 x 400 V ~	1,37	1	1,36	2,51	E2D3T	
FEKA VS 1200 M-NA	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63	E2D3M	
FEKA VS 1200 T-NA	3 x 400 V ~	1,86	1,2	1,6	3,44	E2D3T	
FEKA VS GRINDER 1000 MA	220 x 240V	1,3	1	1,3	6,4 A	E2D3M	
FEKA VS GRINDER 1000 M-NA	220 x 240V	1,3	1	1,3	6,2 A	E2D 3M	
FEKA VS GRINDER 1000 TNA	380 x 415V	1,3	1	1,3	3 A	E2D3T	
FEKA FXV 20.07 MNA*	1x230V	1,4	0,9	1,2	6,4	E2D3M	
FEKA FXV 20.07 TNA*	3x400V	1,4	0,9	1,2	2,4	E2D3T	NGPANEL
FEKA FXV 20.11 MNA*	1x230V	1,7	1,2	1,6	8	E2D3M	
FEKA FXV 20.11 TNA*	3x400V	1,6	1,2	1,6	2,9	E2D3T	
FEKA FXV 20.15 MNA*	1x230V	2,3	1,7	2,3	10,5	E2D4M	
FEKA FXV 20.15 TNA*	3x400V	2,2	1,7	2,3	4	E2D3T	
FEKA FXV 20.22 TNA*	3x400V	2,9	2,2	2,9	5	E2D5T	
FEKA FXC 20.07 MNA	1x230V	0,9	0,7	0,9	4,1	E2D2M	
FEKA FXC 20.07 TNA	3x400V	0,9	0,7	0,9	1,8	E2D1,5M	
FEKA FXC 20.11 MNA	1x230V	1,4	1	1,3	6,3	E2D3M	
FEKA FXC 20.11 TNA	3x400V	1,3	1	1,3	2,6	E2D3T	
FEKA FXC 20.15 MNA	1x230V	2	1,5	2,0	9,1	E2D3M	
FEKA FXC 20.15 TNA	3x400V	1,8	1,5	2,0	3,5	E2D3T	
FEKA FXC 20.22 TNA	3x400V	2,8	2,2	2,9	4,9	E2D5T	

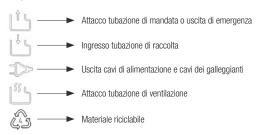
^{*}Disponibile in versione Atex



FEKAFOS 280 DOUBLE - STAZIONI DI RACCOLTA E SOLLEVAMENTO AUTOMATICO ACQUE REFLUE

Massima temperatura del liquido: 45°C

MODELLO			DATI ELETTRICI	MODELLO	MODELLO		
MODELLO POMPA	ALIMENTAZIONE	P1 MAX	P2 NOI	MINALE	In	QUADRO	QUADRO
TOMIA	50 HZ	kW	kW	HP	A	ELETTRICO	ELETTRONICO
DRENAG FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,1	E2D2M	
DRENAG FX 15.07 TNA*	3x400V	1	0,8	1,1	2,1	E2D2T	
DRENAG FX 15.11 MNA*	1x230V	1,5	1,2	1,6	6,8	E2D3M	
DRENAG FX 15.11 TNA*	3x400V	1,5	1,2	1,6	2,8	E2D3T	
DRENAG FX 15.15 MNA*	1x230V	2,3	1,8	2,4	10,6	E2D4M	
DRENAG FX 15.15 TNA*	3x400V	2,5	1,8	2,4	4,3	E2D5T	
DRENAG FX 15.22 TNA*	3x400V	3,1	2,3	3,1	5,2	E2D5T	NGPANEL
GRINDER FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,3	E2D3M	NUPANEL
GRINDER FX 15.07 TNA*	3x400V	1	0,8	1,1	2	E2D3T	
GRINDER FX 15.11 MNA*	1x230V	1,5	1,1	1,5	6,8	E2D3M	
GRINDER FX 15.11 TNA*	3x400V	1,5	1,1	1,5	2,8	E2D3T	
GRINDER FX 15.15 MNA*	1x230V	2,2	1,6	2,1	9,8	E2D4M	
GRINDER FX 15.15 TNA*	3x400V	2,1	1,6	2,1	3,8	E2D5T	
GRINDER FX 15.22 TNA*	3x400V	2,6	2,1	2,8	4,7	E2D5T	


^{*}Disponibile in versione Atex

DIMENSIONI E PESI

DII	DIMENSIONI IMBALLO				
L/A	L/B	Н	Kg		
750	600	940	53,7		

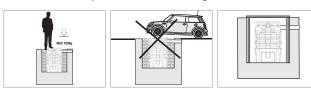
LEGENDA:

FEKAFOS 550 DOUBLE

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER 2 POMPE

DATI TECNICI

Campo di funzionamento:


da 1 a 32 m³/h con prevalenza fino a 23 metri.

Campo di temperatura del liquido: + 45° C

Liquido pompato: acque freatiche, acque piovane, acqua chiara di rifiuto, acque nere di rifiuto e acque di fiume o lago. Liquidi compatibili con la norma EN12050 1/2.

Installazione: Fissata a pavimento se all'interno di un edificio. Interrata se all'esterno di un edificio.

Non carrabile, ma calpestabile solo fino a 100 Kg.

APPLICAZIONI

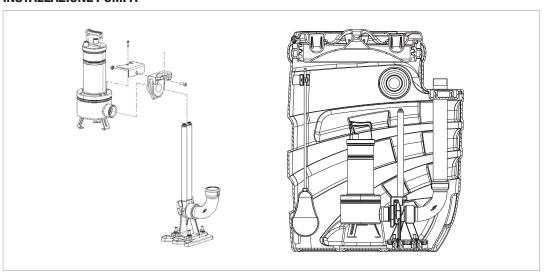
Stazioni di pompaggio idonee per la raccolta e il rilancio in fognatura di acque di scarico domestiche (reflue, grigie e piovane), di seminterrati o garage per una o più unità abitativa, quando la rete fognaria non può essere raggiunta per gravità.

CARATTERISTICHE COSTRUTTIVE

CAPACITÀ: 550 lt MATERIALI: LLDPE NORMATIVA: 12050-1 CONNESSIONI: - Ingressi DN 50/110

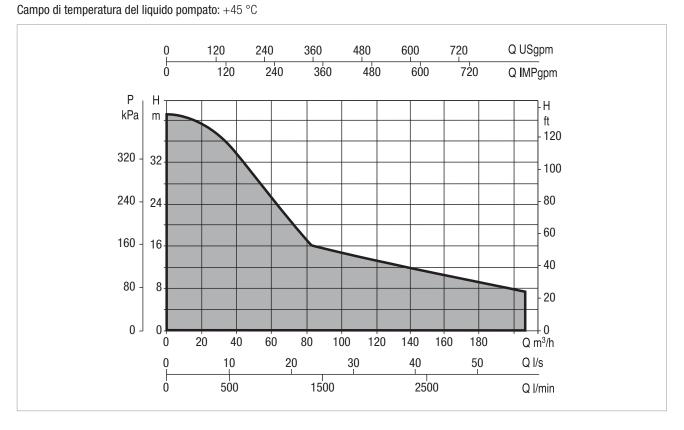
- Ventilazione DN 50 - Uscita G2"

COMPONENTI INCLUSI:



- 2 Dispositivi di sollevamento DSD2" e staffa antirotazionale per FEKA VS e VX
- 6 Pressacavi per doppia pompa e galleggianti
- 2 Kit fermacavo galleggiante FEKA VS e VX
- 3 Galleggianti e supporto galleggiante d'allarme

COMPONENTI ESCLUSI:


- Pompa: da selezionare secondo le configurazioni possibili
- Quadro: da selezionare secondo le configurazioni possibili
- Galleggiante di allarme troppo pieno

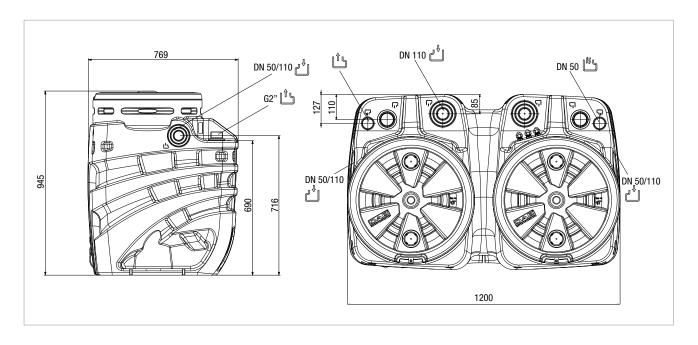
INSTALLAZIONE POMPA

FEKAFOS 550 DOUBLE - STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE

CONFIGURAZIONI

MODELLO	DATI ELETTRICI						MODELLO
MODELLO Pompa	ALIMENTAZIONE	P1 MAX		MINALE	In	QUADRO	QUADRO
. • • • • • • • • • • • • • • • • • • •	50 HZ	kW	kW	HP	А	ELETTRICO	ELETTRONICO
FEKA VS 550 M-NA	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2	E2D2M	
FEKA VS 550 T-NA	3 x 400 V ~	0,90	0,55	0,75	1,64	E2D2T	
FEKA VS 750 M-NA	1 x 220 V -240 V ~	1,11	0,75	1	5,13	E2D2M	
FEKA VS 750 T-NA	3 x 400 V ~	1,02	0,75	1	1,94	E2D2T	
FEKA VS 1000 M-NA	1 x 220 V -240 V ~	1,46	1	1,36	6,63	E2D3M	
FEKA VS 1000 T-NA	3 x 400 V ~	1,37	1	1,36	2,51	E2D3T	
FEKA VS 1200 M-NA	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63	E2D3M	
FEKA VS 1200 T-NA	3 x 400 V ~	1,86	1,2	1,6	3,44	E2D3T	
FEKA VS GRINDER 1000 MA	220 x 240V	1,3	1	1,3	6,4 A	E2D3M	
FEKA VS GRINDER 1000 M-NA	220 x 240V	1,3	1	1,3	6,2 A	E2D 3M	
FEKA VS GRINDER 1000 TNA	380 x 415V	1,3	1	1,3	3 A	E2D3T	
FEKA FXV 20.07 MNA*	1x230V	1,4	0,9	1,2	6,4	E2D3M	
FEKA FXV 20.07 TNA*	3x400V	1,4	0,9	1,2	2,4	E2D3T	NGPANEL
FEKA FXV 20.11 MNA*	1x230V	1,7	1,2	1,6	8	E2D3M	
FEKA FXV 20.11 TNA*	3x400V	1,6	1,2	1,6	2,9	E2D3T	
FEKA FXV 20.15 MNA*	1x230V	2,3	1,7	2,3	10,5	E2D4M	
FEKA FXV 20.15 TNA*	3x400V	2,2	1,7	2,3	4	E2D3T	
FEKA FXV 20.22 TNA*	3x400V	2,9	2,2	2,9	5	E2D5T	
FEKA FXC 20.07 MNA*	1x230V	0,9	0,7	0,9	4,1	E2D2M	
FEKA FXC 20.07 TNA*	3x400V	0,9	0,7	0,9	1,8	E2D1,5M	
FEKA FXC 20.11 MNA*	1x230V	1,4	1	1,3	6,3	E2D3M	
FEKA FXC 20.11 TNA*	3x400V	1,3	1	1,3	2,6	E2D3T	
FEKA FXC 20.15 MNA*	1x230V	2	1,5	2,0	9,1	E2D3M	
FEKA FXC 20.15 TNA*	3x400V	1,8	1,5	2,0	3,5	E2D3T	
FEKA FXC 20.22 TNA*	3x400V	2,8	2,2	2,9	4,9	E2D5T	

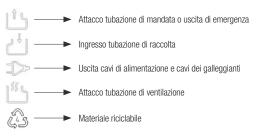
^{*}Disponibile in versione Atex



FEKAFOS 550 DOUBLE- STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE

Campo di temperatura del liquido pompato: +45 °C

MODELLO			DATI ELETTRICI			MODELLO	MODELLO
MODELLO POMPA	ALIMENTAZIONE	P1 MAX	P2 N0	VINALE	In	QUADRO	QUADRO
	50 HZ	kW	kW	HP	А	ELETTRICO	ELETTRONICO
DRENAG FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,1	E2D2M	
DRENAG FX 15.07 TNA*	3x400V	1	0,8	1,1	2,1	E2D2T	
DRENAG FX 15.11 MNA*	1x230V	1,5	1,2	1,6	6,8	E2D3M	
DRENAG FX 15.11 TNA*	3x400V	1,5	1,2	1,6	2,8	E2D3T	
DRENAG FX 15.15 MNA*	1x230V	2,3	1,8	2,4	10,6	E2D4M	
DRENAG FX 15.15 TNA*	3x400V	2,5	1,8	2,4	4,3	E2D5T	
DRENAG FX 15.22 TNA*	3x400V	3,1	2,3	3,1	5,2	E2D5T	NGPANEL
GRINDER FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,3	E2D3M	NGPANEL
GRINDER FX 15.07 TNA*	3x400V	1	0,8	1,1	2	E2D3T	
GRINDER FX 15.11 MNA*	1x230V	1,5	1,1	1,5	6,8	E2D3M	
GRINDER FX 15.11 TNA*	3x400V	1,5	1,1	1,5	2,8	E2D3T	
GRINDER FX 15.15 MNA*	1x230V	2,2	1,6	2,1	9,8	E2D4M	
GRINDER FX 15.15 TNA*	3x400V	2,1	1,6	2,1	3,8	E2D5T	
GRINDER FX 15.22 TNA*	3x400V	2,6	2,1	2,8	4,7	E2D5T	


^{*}Disponibile in versione Atex

DIMENSIONI E PESI

DII	PES0				
L/A	L/B	Н	Kg		
790	1220	965	74		

LEGENDA:

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER 2 POMPE

DATI TECNICI

Campo di funzionamento: da 1 a 160 m³/h con prevalenza fino a 40 metri

Campo di temperatura del liquido: $+55^{\circ}$ C

Liquido pompato: acque freatiche, acque piovane, acqua chiara di rifiuto, acque nere di rifiuto e acque di fiume o lago.

Installazione: Interrata all'esterno di un edificio. Calpestabile fino a 100kg - Installazione standard.

Carrabilità classe D400 con opportuna copertura disponibile come

APPLICAZIONI

Stazione di raccolta e sollevamento automatico adatta ad acque chiare e piovane o cariche di rifiuto civile ed industriale. Costituita da un monoblocco in polietilene di forma cilindrica con fondo opportunamente sagomato per l'alloggiamento delle pompe e per evitare ristagni. La bocca di entrata superiore è dotata di coperchi con chiusura di bloccaggio e guarnizioni anti odore.

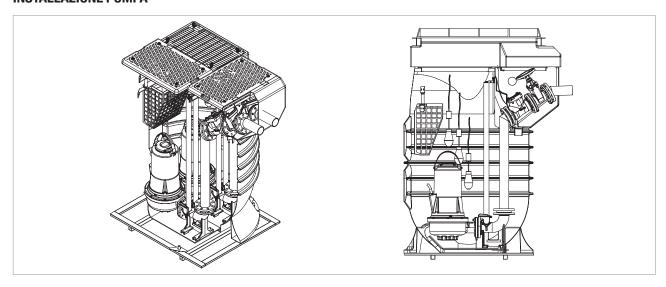
La stazione è predisposta per l'utilizzo di due pompe monofase non automatiche o trifase con diametro di mandata da DN50 a DN80.

CARATTERISTICHE COSTRUTTIVE

CAPACITÁ: 1200 / 1700 / 2200 / 3600 lt

MATERIALI: LLDPE CONNESSIONI:

- Ingressi DN DN125 / DN160
- Ventilazione DN 50
- Uscita 2xDN50 / 2xDN65 / 2xDN80


COMPONENTI INCLUSI:

- \bullet 2 piedi di accoppiamento per inserimento ed estrazione pompe in ghisa sferoidale
- tubi guida in acciaio inox
- tubazione di ingresso con raccordo a T in PVC
- 2 tubazioni di uscita in polietilene
- 3 Galleggianti a bulbo
- Coperchi con chiusura di bloccaggio e guarnizioni anti odore in polietilene

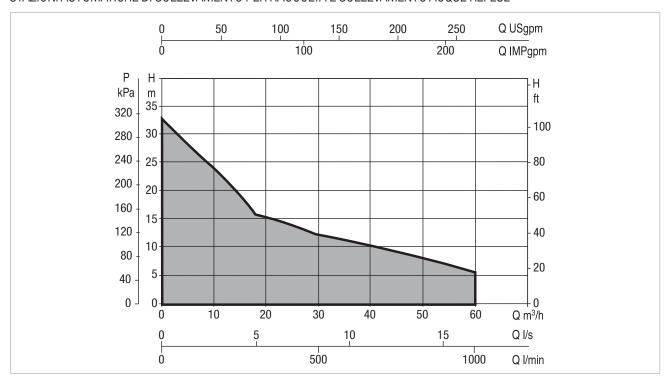
ACCESSORI SU RICHIESTA:

- Camera di manovra valvole completa di due valvole a saracinesca e di valvole di ritegno in ghisa sferoidale
- Grata antiintrusione.
- Griglia di filtraggio.
- Telaio Carrabile D400 1200x1200 (Da fissare in loco nella struttura circostante la vasca)

INSTALLAZIONE POMPA

POMPE SOMMERGIBILI

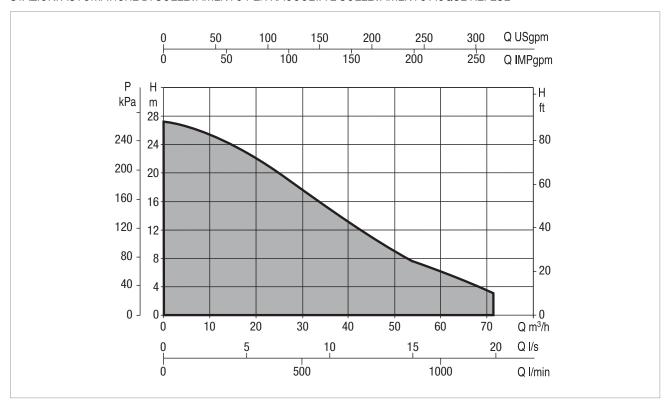
TELAIO CARRABILE D400	DESCRIZIONI
	TELAIO CARRABILE D400 Da fissare in loco nella struttura in CA circostante la vasca - Telaio in acciaio per ancoraggio su soletta in calcestruzzo armato Chiusino carrabile in ghisa sferoidale D400 1200x1200 - Gonnella di elevazione e protezione.


CAMERA VALVOLE	DESCRIZIONI
	CAMERA VALVOLE Preassembalta, da ordinare con la vasca - N° 2 valvole di ritegno a palla, in ghisa sferoidale - N° 2 valvole a saracinesca in ghisa sferoidale - N° 2 tubazioni di uscita in PE

GRIGLIA DI FILTRAGGIO	DESCRIZIONI
	GRIGLIA DI FILTRAGGIO: Preassembalta, da ordinare con la vasca Cestello estraibile in acciaio inox con griglia di filtraggio ingresso 40x40mm.

GRATA ANTINTRUSIONE	DESCRIZIONI
	GRATA ANTINTRUSIONE: Preassembalta, da ordinare con la vasca Telaio e griglie in acciaio per protezione apertura superiore di accesso alla vasca.

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE


CONFIGURAZIONI DN50

			DATI ELETTRICI			MODELLO	MODELLO
MODELLO	ALIMENTAZ.	P1 MAX	P2 NC	MINALE	In	QUADRO	QUADRO
	50 Hz	kW	kW	HP	Ä	ELETTRICO	ELETTRONICO
FEKA VS 550 M-NA	1 x 220 V -240 V ~	0,92	0,55	0,75	4,2	E2D2M	
FEKA VS 550 T-NA	3 x 400 V ~	0,90	0,55	0,75	1,64	E2D2T	
FEKA VS 750 M-NA	1 x 220 V -240 V ~	1,11	0,75	1	5,13	E2D2M	
FEKA VS 750 T-NA	3 x 400 V ~	1,02	0,75	1	1,94	E2D2T	
FEKA VS 1000 M-NA	1 x 220 V -240 V ~	1,46	1	1,36	6,63	E2D3M	
FEKA VS 1000 T-NA	3 x 400 V ~	1,37	1	1,36	2,51	E2D3T	
FEKA VS 1200 M-NA	1 x 220 V -240 V ~	1,93	1,2	1,6	8,63	E2D3M	_
FEKA VS 1200 T-NA	3 x 400 V ~	1,86	1,2	1,6	3,44	E2D3T	
FEKA VS GRINDER 1000 MA	220 x 240V	1,3	1	1,3	6,4 A	E2D3M	
FEKA VS GRINDER 1000 M-NA	220 x 240V	1,3	1	1,3	6,2 A	E2D 3M	
FEKA VS GRINDER 1000 TNA	380 x 415V	1,3	1	1,3	3 A	E2D3T	
FEKA FXV 20.07 MNA*	1x230V	1,4	0,9	1,2	6,4	E2D3M	
FEKA FXV 20.07 TNA*	3x400V	1,4	0,9	1,2	2,4	E2D3T	
FEKA FXV 20.11 MNA*	1x230V	1,7	1,2	1,6	8	E2D3M	
FEKA FXV 20.11 TNA*	3x400V	1,6	1,2	1,6	2,9	E2D3T	
FEKA FXV 20.15 MNA*	1x230V	2,3	1,7	2,3	10,5	E2D4M	
FEKA FXV 20.15 TNA*	3x400V	2,2	1,7	2,3	4	E2D3T	
FEKA FXV 20.22 TNA*	3x400V	2,9	2,2	2,9	5	E2D5T	
FEKA FXC 20.07 MNA*	1x230V	0,9	0,7	0,9	4,1	E2D2M	
FEKA FXC 20.07 TNA*	3x400V	0,9	0,7	0,9	1,8	E2D1,5M	NGPANEL
FEKA FXC 20.11 MNA*	1x230V	1,4	1	1,3	6,3	E2D3M	
FEKA FXC 20.11 TNA*	3x400V	1,3	1	1,3	2,6	E2D3T	
FEKA FXC 20.15 MNA*	1x230V	2	1,5	2,0	9,1	E2D4M	
FEKA FXC 20.15 TNA*	3x400V	1,8	1,5	2,0	3,5	E2D3T	
FEKA FXC 20.22 TNA*	3x400V	2,8	2,2	2,9	4,9	E2D5T	
DRENAG FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,1	E2D2M	
DRENAG FX 15.07 TNA*	3x400V	1	0,8	1,1	2,1	E2D2T	
DRENAG FX 15.11 MNA*	1x230V	1,5	1,2	1,6	6,8	E2D3M	
DRENAG FX 15.11 TNA*	3x400V	1,5	1,2	1,6	2,8	E2D3T	
DRENAG FX 15.15 MNA*	1x230V	2,3	1,8	2,4	10,6	E2D4M	
DRENAG FX 15.15 TNA*	3x400V	2,5	1,8	2,4	4,3	E2D5T	
DRENAG FX 15.22 TNA*	3x400V	3,1	2,3	3,1	5,2	E2D5T	
GRINDER FX 15.07 MNA*	1x230V	1,1	0,8	1,1	5,3	E2D3M	
GRINDER FX 15.07 TNA*	3x400V	1	0,8	1,1	2	E2D3T	
GRINDER FX 15.11 MNA*	1x230V	1,5	1,1	1,5	6,8	E2D3M	
GRINDER FX 15.11 TNA*	3x400V	1,5	1,1	1,5	2,8	E2D3T	
GRINDER FX 15.15 MNA*	1x230V	2,2	1,6	2,1	9,8	E2D4M	
GRINDER FX 15.15 TNA*	3x400V	2,1	1,6	2,1	3,8	E2D5T	
GRINDER FX 15.22 TNA*	3x400V	2,6	2,1	2,8	4,7	E2D5T	

*Disponibile in versione Atex

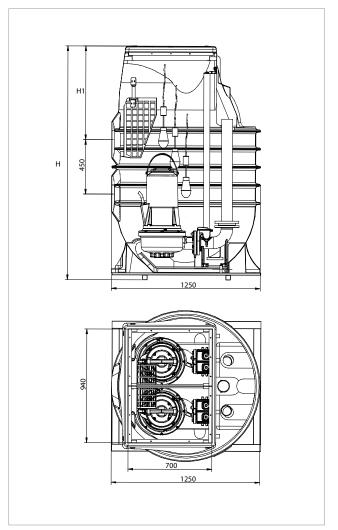
STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE

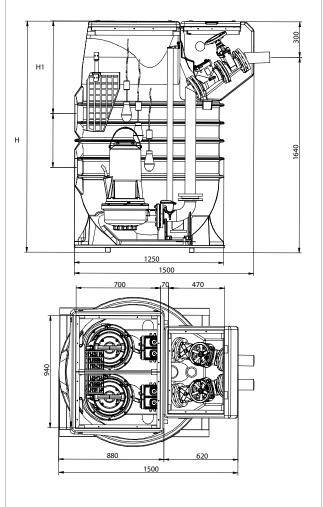
CONFIGURAZIONI DN65

		MODELLO	MODELLO				
MODELLO	ALIMENTAZIONE DA MAY INV		P2 N0	MINALE	I.a. A	QUADRO	QUADRO
	50 Hz	P1 MAX kW	Kw	HP	In A	ELETTRICO	ELETTRONICO
FEKA FXV 25.07.4 TNA*	3x400V	1	0,7	0,9	2,2	E2D3M	
FEKA FXV 25.12.4 TNA*	3x400V	1,7	1,2	1,6	3	E2D3T	
FEKA FXV 25.07 MNA*	1x230V	1,5	1	1,3	6,6	E2D3M	
FEKA FXV 25.07 TNA*	3x400V	1,3	1	1,3	2,3	E2D3T	
FEKA FXV 25.11 MNA*	1x230V	1,7	1,2	1,6	7,6	E2D4M	
FEKA FXV 25.11 TNA*	3x400V	1,7	1,2	1,6	3	E2D5T	
FEKA FXV 25.15 MNA*	1x230V	2,3	1,7	2,3	10,6	E2D5T	
FEKA FXV 25.15 TNA*	3x400V	2,2	1,7	2,3	4	E2D3T	
FEKA FXV 25.22 TNA*	3x400V	2,8	2,2	2,9	4,9	E2D3T	
FEKA FXC 25.07 MNA*	1x230V	0,9	0,6	0,8	4,1	E2D3M	
FEKA FXC 25.07 TNA*	3x400V	0,9	0,6	0,8	1,8	E2D1,5M	NGPANEL
FEKA FXC 25.11 MNA*	1x230V	1,4	1,1	1,5	6,4	E2D4M	NUFANEL
FEKA FXC 25.11 TNA*	3x400V	1,4	1,1	1,5	2,6	E2D5T	
FEKA FXC 25.15 MNA*	1x230V	2	1,6	2,1	9,3	E2D5T	
FEKA FXC 25.15 TNA*	3x400V	1,9	1,6	2,1	3,6	E2D3T	
FEKA FXC 25.22 TNA*	3x400V	2,9	2,3	3,1	5	E2D3T	
FKV 65.11.4 T5 400D*	3 x 400 V~	1,3	1,1	1,5	3,3	E2D3T	
FKV 65 22.2 T5 400D*	3 x 400 V~	2,5	2,2	3,0	4,8	E2D5T	
FKV 65 30.2 T5 400D*	3 x 400 V~	3,3	3,0	4,0	5,7	E2D5T	
FKV 65 40.2 T5 400D*	3 x 400 V~	4,6	4,0	5,5	7,5	E2D8T	
FKC 65 22.2 T5 400D*	3 x 400 V~	2,6	2,2	3,0	4,8	E2D5T	
FKC 65 30.2 T5 400D*	3 x 400 V~	3,4	3,0	4,0	5,8	E2D5T	

^{*}Disponibile in versione Atex

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE


CONFIGURAZIONI DN80


		MODELLO	MODELLO				
MODELLO	ALIMENTAZIONE	P1	P2 NOI	VINALE	In	QUADRO	QUADRO
	50 Hz	kW	kW	HP	A	ELETTRICO	ELETTRONICO
FKV 80 11.4 T5 400D*	3 x 400 V~	1,3	1,1	1,5	3,5	E2D3T	
FKV 80 15.4 T5 400D*	3 x 400 V~	1,8	1,5	2,0	3,8	E2D5T	
FKV 80 22.4 T5 400D*	3 x 400 V~	2,5	2,2	3,0	4,7	E2D5T	NGPANEL
FKV 80 40.4 T5 400D*	3 x 400 V~	4,5	4,0	5,5	8,6	E2D8T	
FKV 80 40.2 T5 400D*	3 x 400 V~	4,6	4,0	5,5	7,7	E2D8T	
FKV 80 60.2 T5 400Y/D*	3 x 400 V~	6,9	6,0	8,2	11,7	E2D15T SD	-
FKV 80 75.2 T5 400Y/D*	3 x 400 V~	8,3	7,5	10,2	13,7	E2D22T SD	-
FKV 80 92.2 T5 400Y/D*	3 x 400 V~	10,2	9,2	12,5	18,0	E2D30T SD	-
FKV 80 110.2 T5 400Y/D*	3 x 400 V~	12,1	11,0	15,0	21,0	E2D30T SD	-
FKC 80 15.4 T5 400D*	3 x 400 V~	1,8	1,5	2,0	3,5	E2D3T	
FKC 80 22.4 T5 400D*	3 x 400 V~	2,6	2,2	3,0	4,7	E2D5T	NCDANIEL
FKC 80 30.4 T5 400D*	3 x 400 V~	3,6	3,0	4,0	7,6	E2D8T	NGPANEL
FKC 80 40.4 T5 400D*	3 x 400 V~	4,7	4,0	5,5	8,9	E2D8T	
FKC 80 55.4 T5 400Y/D*	3 x 400 V~	6,3	5,5	7,5	12	E2D15T SD	-
FKC 80 75.4 T5 400Y/D*	3 x 400 V~	8,5	7,5	10,0	14,1	E2D30T SD	-

^{*}Disponibile in versione Atex

STAZIONI AUTOMATICHE DI SOLLEVAMENTO PER RACCOLTA E SOLLEVAMENTO ACQUE REFLUE

DIMENSIONI E PESI

MODELLO	VOLUME (It)	INLET / OUTLET	H1 (mm)	VOLUME UTILE (It)	H (mm)	PESO kg	DIMENSIONI (mm)	DIMENSIONI CON CAMERA VALVOLE (mm)
FEKAFOS 1200 MAXI	1200		775	800	1420	140	1250 x 1250 x 1420	1250 x 1500 x 1420
FEKAFOS 1700 MAXI	1700	10F / 0 DNF0	775	1050	1870	165	1250 x 1250 x 1870	1250 x 1500 x 1870
FEKAFOS 2200 MAXI	2200	125 / 2x DN50	775	1900	2320	190	1250 x 1250 x 2320	1250 x 1500 x 2320
FEKAFOS 3600 MAXI	3600		775	3100	3670	285	1250 x 1250 x 3670	1250 x 1500 x 3670
FEKAFOS 1200 MAXI	1200		775	800	1420	170	1250 x 1250 x 1420	1250 x 1500 x 1420
FEKAFOS 1700 MAXI	1700	100 / Ov DNCE	775	1050	1870	195	1250 x 1250 x 1870	1250 x 1500 x 1870
FEKAFOS 2200 MAXI	2200	160 / 2x DN65	775	1900	2320	220	1250 x 1250 x 2320	1250 x 1500 x 2320
FEKAFOS 3600 MAXI	3600		775	3100	3670	315	1250 x 1250 x 3670	1250 x 1500 x 3670
FEKAFOS 1200 MAXI	1200		775	800	1420	183	1250 x 1250 x 1420	1250 x 1500 x 1420
FEKAFOS 1700 MAXI	1700	100 / O. DNOO	775	1050	1870	208	1250 x 1250 x 1870	1250 x 1500 x 1870
FEKAFOS 2200 MAXI	2200	160 / 2x DN80	775	1900	2320	220	1250 x 1250 x 2320	1250 x 1500 x 2320
FEKAFOS 3600 MAXI	3600		775	3100	3670	328	1250 x 1250 x 3670	1250 x 1500 x 3670

H1* La quota di ingresso dal livello di calpestio è modulabile, su richiesta è possibile avere una quota maggiore definiti nei seguenti intervalli.

FEKAFOS 1700 H1 opzionali: 1230 mm FEKAFOS 2200 H1 opzionali: 1230 mm / 1680 mm

FEKAFOS 3600 H1 opzionali: 1230 mm / 1680 mm / 2130mm / 2580mm

NOVAIR

AERATORE SOMMERSO

DATI TECNICI

Campo di funzionamento: portata d'aria tra $2 - 17 \text{ m}^3/\text{h}$ per profondità da 20 - 90 cm dalla asse della bocca di aspirazione.

Grado di protezione: IP68. Classe di isolamento: F.

Campo di funzionamento del liquido: da 0 °C a 35 °C secondo EN 60335-

2-41 per uso domestico.

Minima profondità d'immersione: 20 cm

Massima profondità d'immersione: 80cm (Novair 200) 90cm (Novair 600) Liquido di immersione: acque luride da fossa biologica senza corpi solidi

e fibre, e acque chiare.

Tensione di serie: monofase: 220 – 240 V/ 50 Hz.

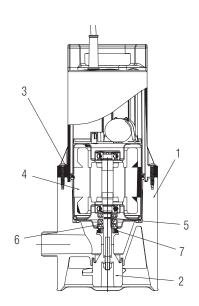
Cavo d'alimentazione: H07RNF8-F di 2 mt, 5mt e 10 mt e con possibilità

di spina SCHUKO. **Installazione:** Verticale

APPLICAZIONI

L'aeratore sommerso è concepito per l'aerazione di liquami in piccoli impianti di depurazione. Ulteriori possibilità d'impiego si ritrovano nell'ossigenazione di stagni per giardino e vivai per pesci non di acqua salata.

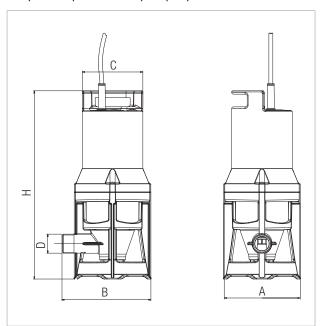
CARATTERISTICHE COSTRUTTIVE

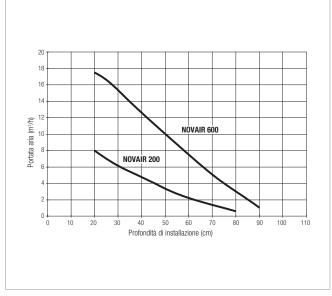

Corpo pompa, coperchio cablaggi e girante in tecnopolimero. Motore, due poli, sommergibile di tipo asincrono, da 0,18 e 0,4 kW con protezione termica incorporata nel motore e condensatore permanente posto nel vano cablaggi.

Albero motore in acciaio con boccola ceramizzata montato su cuscinetti a sfera sovradimensionati ingrassati a vita. Triplice tenuta ad anelli interposti con precamera d'olio.

MATERIALI

N°	PARTICO	LARI *	MATERIALI		
1	CORPO POI	МРА	TECNOPOLIMERO		
2	GIRANTE		TECNOPOLIMERO		
3	GUARNIZIO	NE OR	NBR 70		
4	MOTORE	CASSA MOTORE	AISI 304		
4	WOTONE	ALBERO	AISI 416		
5	BOCCOLA (CERAMIZZATA	AISI 303 + CERAMICA		
6	TENUTA RADIALE		NBR 70		
7	V-RING		NBR 70 + GRASSO		


^{*} A contatto con il liquido

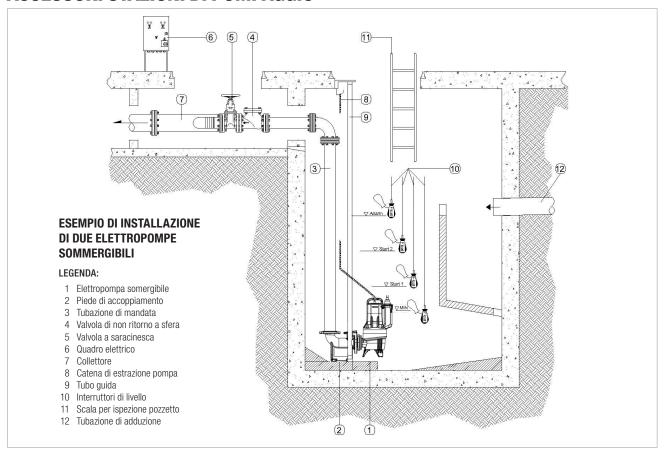


NOVAIR - AERATORE SOMMERSO PER PICCOLI IMPIANTI DI DEPURAZIONE

Campo di temperatura del liquido pompato: da 0 °C a 35 °C secondo EN 60335-2-41 per uso domestico.

Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm²/s e densità pari a 1000 kg/m³. Tolleranza delle curve secondo ISO9906.

		PORTATA					
MODELLO	ALIMENTAZ.	P1 MAX	P2 NOI	VINALE	In	D'ARIA	
	50 Hz	kW	kW	HP	A	MAX m³/h	
NOVAIR 200 M-NA	1X220- 240 V~	0,28	0,18	0,24	1,4	8	
NOVAIR 600 M-NA	1X220- 240 V~	0,63	0.40	0,54	3	17,5	


MODELLO	Н	٨	A B	Ø C	D	DIMENSIONI IMBALLO			CAVO	VOLUME	PES0
WIODELLO	"	A		y c	G NPT	L/A	L/B	Н	GAVO	(mc)	Kg
									2 mt / H07RN8-F	0,015	3,5
NOVAIR 200	329,5 130,5	130,5	158	106	1"	190	190 255	55 308	5 mt / H07RN8-F		
									10 mt / H07RN8-F		
							190 255 419		2 mt / H07RN8-F		
NOVAIR 600	380,2 130,5 1	158	106	1" 1/4	190	190 255		419	5 mt / H07RN8-F	0,015	5,4
									10 mt / H07RN8-F		

ACCESSORI QUADRI

ACCESSORI STAZIONI DI POMPAGGIO

GALLEGGIANTI	DESCRIZIONE		NOVA/FEKA Drenag	FEKAVS	FX	FK	SOCCORRER	FEKABOX / FEKAFOS
		5 METRI						
	CALLECCIANTE	10 METRI		•	•	•		
	GALLEGGIANTE	15 METRI	•	•	•			
		20 METRI						
	GALLEGGIANTE ATEX	10 METRI			•	•		
	GALLEGGIANTE A BULBO	10 METRI		•	•			
		20 METRI						
	CONTRAPPESO GR. 300 PER GALLEGGIANTE		•	•	•	•	•	

POMPE SOMMERGIBILI

DISPOSITIVI DI SOLLEVAMENTO	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS	FX	FEKABOX /FEKAFOS
1111	DISPOSITIVO DI SOLLEVAMENTO PER FEKA VS 550-1200		•		
9 29	STAFFA ANTIROTAZIONE PER FEKA VS		•		

TUBI GUIDA NON FORNITI

DISPOSITIVI DI ACCOPPIAMENTO	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS	FX	FK	FEKABOX / FEKAFOS
1015	DA-050 DISPOSITIVO DI ACCOPPIAMENTO ORIZZONTALE			•		
I	DA-065 DISPOSITIVO DI ACCOPPIAMENTO ORIZZONTALE DN65			•	•	
	DA-V65 DISPOSITIVO DI ACCOPPIAMENTO DN65			•	•	
	DA-V80 DISPOSITIVO DI ACCOPPIAMENTO DN80				•	
	DA-V100 DISPOSITIVO DI ACCOPPIAMENTO DN100				•	
-	DA-V150 DISPOSITIVO DI ACCOPPIAMENTO DN150				•	

BASAMENTI DI SOSTEGNO	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS	FX	FK	FEKABOX / FEKAFOS
	BASAMENTO DI SOSTEGNO Ø325 FK				•	
4FB	BASAMENTO DI SOSTEGNO Ø330 FK				•	
	BASAMENTO DI SOSTEGNO Ø355 FK				•	
8	BASAMENTO DI SOSTEGNO Ø400 FK				•	

POMPE SOMMERGIBILI

KIT GRILLO	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS/ FEKA VS GRINDER	FX	FK	FEKABOX / FEKAFOS
S Valley	KIT CATENA C/GRILLO 3MT A316 MAX 150KG					
00	KIT CATENA C/GRILLO 3MT A316 MAX 350KG	•	•	•	•	•
Q Q	KIT CATENA C/GRILLO 3MT A316 MAX 700KG					

ADATTATORI	DESCRIZIONE	DRENAG FX/ GRINDER FX	FEKA VS Grinder	FEKA FXV	FEKA FXC	FK
	ADATTATORE DISPOSITIVO DI ACCOPPIAMENTO FLYGT DN 65					•
	ADATTATORE DISPOSITIVO DI ACCOPPIAMENTO FLYGT DN 80					•
	ADATTATORE DISPOSITIVO DI ACCOPPIAMENTO FLYGT DN 100					•
	ADATTATORE DISPOSITIVO DI ACCOPPIAMENTO FLYGT DN 150					•
0	ADATTATORE FX - DISPOSITIVO DI ACCOPPIAMENTO FLYGT DN50			•	•	
	ADATTATORE FX - PIEDE DI ACCOPPIAMENTO Grinder – Feka dn32 dn40 dn 50	•	•	•	•	
	ADATTATORE FK 65 - PIEDE DI ACCOPPIAMENTO FEKA2500					•
	ADATTATORE FK 80 - PIEDE DI ACCOPPIAMENTO FEKA3000					•
	ADATTATORE FK 100 - PIEDE DI ACCOPPIAMENTO FEKA 4000					•
	ADATTATORE FK 150 - PIEDE DI ACCOPPIAMENTO FEKA 6000					•
	ADATTATORE FK 65 - PIEDE DI ACCOPPIAMENTO FEKA 3000					•
	ADATTATORE FK 80 - PIEDE DI ACCOPPIAMENTO FEKA 4000					•
	KIT CURVA 90° 1"1/2 GAS FX	•	•			
CALL	KIT CURVA 90° 2" GAS FX *			•	•	
G	KIT CURVA 90° 2" 1/2 GAS FX **			•	•	•
	KIT CURVA 90° 3" GAS FX **			•	•	•

 $^{^{\}star}$ Adatto per pompe con DN50 - ** Adatto per pompe con DN65

KIT FLANGIA	DESCRIZIONE	FX	FK
All.	KIT FLANGIA DN 65 PN 16 UNI 2254	•	•
	KIT FLANGIA DN 80 PN 16 UNI 2254		•
	KIT FLANGIA DN 100 PN 16 UNI 2254		•

POMPE SOMMERGIBILI

VALVOLE DI NON RITORNO A PALLA	DESCRIZIONE	NOVA/FEKA DRENAG	FEKA VS	FX	FK	FEKABOX / FEKAFOS
	VALVOLA DI NON RITORNO A PALLA PN10 PVC 1" ¼ FILETTATA	•				
	VALVOLA DI NON RITORNO A PALLA PN10 PVC 1"½ FILETTATA	•	•	•		
	VALVOLA DI NON RITORNO A PALLA PN10 PVC 2" FILETTATA	•	•	•		•
	VALVOLA DI NON RITORNO A PALLA PN10 PVC 2"1/2 FILETTATA	•	•	•	•	•
	VALVOLA DI NON RITORNO A PALLA PN10 PVC 3" FILETTATA	•	•	•	•	•
	VALVOLA DI NON RITORNO A PALLA 1" ¼ FILETTATA	•				
	VALVOLA DI NON RITORNO A PALLA 1" ½ FILETTATA	•	•	•		
	VALVOLA DI NON RITORNO A PALLA 2" FILETTATA	•	•	•		•
	VALVOLA DI NON RITORNO A PALLA 2" ½ FILETTATA	•	•	•	•	
	VALVOLA DI NON RITORNO A PALLA DN 50		•	•		•
	VALVOLA DI NON RITORNO A PALLA DN 65		•	•	•	•
Co. The same	VALVOLA DI NON RITORNO A PALLA DN 80				•	•
10:12	VALVOLA DI NON RITORNO A PALLA DN 100				•	
100	VALVOLA DI NON RITORNO A PALLA DN 150				•	
	VALVOLA DI NON RITORNO A PALLA DN 200					

KIT DI RIFLUSSO	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS	FX	FK	FEKABOX / FEKAFOS
	KIT DI RIFLUSSO	•	•	•		•

VALVOLE A SARACINESCA	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS	FX	FK	FEKABOX / FEKAFOS
	VALV A SARACINESCA CORPO PIATTO DN 50		•	•		•
4	VALV A SARACINESCA CORPO PIATTO DN 65		•	•	•	•
	VALV A SARACINESCA CORPO PIATTO DN 80				•	•
	VALV A SARACINESCA CORPO PIATTO DN 100				•	•
(MI)	VALV A SARACINESCA CORPO PIATTO DN 150				•	•
40	VALV A SARACINESCA CORPO PIATTO DN 200					•

CONTROLLO E ALLARMI PER QUADRI	DESCRIZIONE	NOVA/FEKA Drenag	FEKA VS	FX	FK	FEKABOX / FEKAFOS
8	CONTROL AS 1 - CON DISPOSITIVO DI ALLARME	•	•	•		

SISTEMI DI EMERGENZA

DATI TECNICI

Tensione di alimentazione: Monofase 230 V \pm 10 % 50 Hz Tensione di uscita: Monofase 230 V \pm 10 % 50 Hz

Frequenza di uscita: $50~Hz \pm 0{,}005~\%$ Temperatura di esercizio: -20° C + 60° C

Umidità: ≤ 90 % non condensata **Grado di protezione:** IP 21

APPLICAZIONI

I sistemi SOCCORRER sono indicati in installazioni civili ed industriali dove sia necessario alimentare una elettropompa 230V monofase e la mancanza temporanea dell'energia elettrica possa causare l'allagamento dei locali situati al di sotto della rete idrico-fognaria con conseguenti danni a persone o cose.

Il nuovi sistemi SOCCORRER sono composti da due parti principali: un supporto metallico con sistema di fissaggio a muro e una scocca in ABS autoestinguente. Il loro design innovativo li rendono adatti alle installazioni in qualsiasi tipo di ambiente.

FUNZIONALITÀ

I sistemi SOCCORRER sono completamente automatici perchè gestiti da un microprocessore ad alte prestazioni in grado di controllare:

La mancanza di energia elettrica di rete e la necessità di utilizzare quella delle batterie.

Il tipo di batteria e lo stato di carica.

Ricaricare le batterie nel minor tempo possibile.

L'avviamento e spegnimento delle elettropompe (anche con galleggiante di sicurezza).

Il sistema ampermetrico di protezione.

Eventuali sovraccarichi delle elettropompe.

Il riarmo automatico delle elettropompe.

Che l'elettropompa non funzioni a secco.

Gli autotest manuali e automatici.

Un contatto libero per segnale di allarme a distanza.

I sistemi SOCCORRER sono disponibili in "singola uscita" (una elettropompa) o "doppia uscita" (due elettropompe). Nella versione "doppia uscita" il funzionamento delle elettropompe può essere in alternanza o in contemporaneità..

FORNITURA

I sistemi SOCCORRER, vengono forniti completi di: centrale antiallagamento, cavi di collegamento delle batterie, batterie sigillate e mensole portabatterie. Il galleggiante viene fornito a parte, tuttavia è necessario per il funzionamento con le pompe DAB non automatiche.

SISTEMI DI EMERGENZA

			FUNZIONAMENTO 1 POMPA MONOFASE (unico Pozzetto) azionamenti M-A e M-NA	FUNZIONAMENTO 2 POMPE MONOFASE (unico Pozzetto) solo azionamento M-A
SOCCORRER	SINGOLA USCITA			FUNZIONAMENTO 2 POMPE MONOFASE (2 Pozzetti Distinti) solo azionamento M-A
MODELLO	n° BATTERIE	Corrente Max Elettropompe Ampere	MODELLO POMPA (Autonomia minuti)	MODELLO POMPA (Autonomia minuti)
SOCCORRER 500	4 x 12Ah	1,9	1 x Nova 180 (106 min.) 1 x Nova 200 (63 min.) 1 x Nova 300 M-A (60 min.)	-
SOCCORRER 600	2 x 45 Ah	2,3	1 x Nova 180 (166 min.) 1 x Nova 200 (100 min.) 1 x Nova 300 (93 min.)	2 x Nova 180 (83 min.)
SOCCORRER 600	2 x 60 Ah	2,3	1 x Nova 180 (230 min.) 1 x Nova 200 (138 min.) 1 x Nova 300 (129 min.)	2 x Nova 180 (115 min.)
SOCCORRER 1000 PLUS	2 x 45 Ah	4,2	1 x Nova 600 (47 min.)	2 x Nova 200 (54 min.) 2 x Nova 300 (50 min.)
SOCCORRER 1000 PLUS	2 x 60 Ah	4,2	1 x Nova 600 (65 min.)	2 x Nova 200 (73 min.) 2 x Nova 300 (66 min.)
SOCCORRER 1000 PLUS	2 x 100 Ah	4,2	1 x Nova 600 (123 min.)	2 x Nova 200 (140 min.) 2 x Nova 300 (130 min.)
SOCCORRER 1500	4 x 60 Ah	5,7	1 x Nova 600 (121 min.) 1 x Feka 600 M (95 min.) 1 x Feka VS 550 (98 min.) 1 x Feka VS 750 (80 min.)	
SOCCORRER 1500	4 x 100 Ah	5,7	1 x Nova 600 (218 min.) 1 x Feka 600 M (172 min.) 1 x Feka VS 550 (176 min.) 1 x Feka VS 750 (144 min.)	-
SOCCORRER 2000	4 x 60 Ah	7,6	1 x Feka VS 1000 (62 min.) 1 x Drenag 1000 (68 min.) 1 x Drenag 1200 (55 min.)	2 x Nova 600 (60 min.)
SOCCORRER 2000	4 x 100 Ah	7,6	1 x Feka VS 1000 (109 min.) 1 x Drenag 1000 (120 min.) 1 x Drenag 1200 (96 min.)	2 x Nova 600 (106 min.)
SOCCORRER 2500	4 x 60 Ah	9,6	1 x Feka VS 1000 (62 min.) 1 x Feka VS 1200 (47 min.) 1 x Drenag 1400 (44 min.) 1 x Feka 1400 (47 min.)	2 x Feka 600 (47 min.) 2 x Feka VS 550 (48 min.)
SOCCORRER 2500	4 x 100 Ah	9,6	1 x Feka VS 1000 (109 min.) 1 x Feka VS 1200 (83 min.) 1 x Drenag 1400 (78 min.) 1 x Feka 1400 (85 min.)	2 x Feka 600 (84 min.) 2 x Feka VS 550 (86 min.)
SOCCORRER 3000	4 x 60 Ah	11,5		2 x Feka VS 750 (40 min.)
SOCCORRER 3000	4 x 100 Ah	11,5		2 x Feka VS 750 (66 min.)
SOCCORRER 4000	4 x 100 Ah	15,2	-	2 x Feka VS 1000 (60 min.)
SOCCORRER 4000	4 x 180 Ah	15,2	1 x Feka VS 1000 (220 min.) 1 x Feka VS 1200 (169 min.) 1 x Drenag 1000 (243 min.) 1 x Drenag 1200 (195 min.) 1 x Drenag 1400 (159 min.) 1 x Feka 1400 (172 min.)	2 x Feka VS 1000 (108 min.)
SOCCORRER 5000	4 x 100 Ah	20	-	2 x Feka VS 1200 (41 min.) 2 x Drenag 1400 (37 min.) 2 x Feka 1400 (42 min.) 2 x Drenag 1200 (47 min.)
SOCCORRER 5000	4 x 180 Ah	20	-	2 x Feka VS 1200 (41 min.) 2 x Drenag 1400 (37 min.) 2 x Feka 1400 (42 min.) 2 x Drenag 1200 (47 min.)

SISTEMI DI EMERGENZA

SOCCORRER DOPPIA USCITA ALTERNATA			FUNZIONAMENTO IN ALTERNANZA 2 POMPE MONOFASE (Unico Pozzetto) azionamenti M-A e M-NA	FUNZIONAMENTO IN ALTERNANZA + SIMULTANEA DI DUE POMPE MONOFASE (Unico Pozzetto)
				azionamenti M-A e M-NA
MODELLO	n° BATTERIE	Corrente Max Elettropompe Ampere	MODELLO POMPA (Autonomia minuti)	MODELLO POMPA (Autonomia minuti)
SOCCORRER 600	2 x 45 Ah	2,3	1 x Nova 180 (166 min.) 1 x Nova 200 (100 min.) 1 x Nova 300 (93 min.)	2 x Nova 180 (166/83 min.)
SOCCORRER 600	2 x 60 Ah	2,3	1 x Nova 180 (230 min.) 1 x Nova 200 (138 min.) 1 x Nova 300 (129 min.)	2 x Nova 180 (230/115 min.)
SOCCORRER 1000 PLUS	2 x 45 Ah	4,2	1 x Nova 600 (47 min.)	2 x Nova 200 (108/54 min.) 2 x Nova 300 (100/50 min.)
SOCCORRER 1000 PLUS	2 x 60 Ah	4,2	1 x Nova 600 (65 min.)	2 x Nova 200 (146/73 min.) - 2 x Nova 300 (132/66 min.)
SOCCORRER 1000 PLUS	2 x 100 Ah	4,2	1 x Nova 600 (123 min.)	2 x Nova 200 (280/140 min.) 2 x Nova 300 (260/130 min.)
SOCCORRER 1500	4 x 60 Ah	5,7	1 x Nova 600 (121 min.) 1 x Feka 600 M (95 min.) 1 x Feka VS 550 (98 min.) 1 x Feka VS 750 (80 min.)	
SOCCORRER 1500	4 x 100 Ah	5,7	1 x Nova 600 M (218 min.) 1 x Feka 600 M (172 min.) 1 x Feka VS 550 (176 min.) 1 x Feka VS 750 (144 min.)	-
SOCCORRER 2000	4 x 60 Ah	7,6	1 x Drenag 1000 (68 min.) 1 x Drenag 1200 (55 min.)	2 x Nova 600 (120/60 min.)
SOCCORRER 2000	4 x 100 Ah	7,6	1 x Drenag 1000 (120 min.) 1 x Drenag 1200 (96 min.)	2 x Nova 600 (212/106 min.)
SOCCORRER 2500	4 x 60 Ah	9,6	1 x Feka VS 1200 (47 min.) 1 x Drenag 1400 (44 min.) 1 x Feka 1400 (47 min.)	2 x Feka 600 (94/47 min.) 2 x Feka VS 550 (96/48 min.)
SOCCORRER 2500	4 x 100 Ah	9,6	1 x Feka VS 1200 (83 min.) 1 x Drenag 1400 (78 min.) 1 x Feka 1400 (85 min.)	2 x Feka 600 (168/84 min.) 2 x Feka VS 550 (172/86 min.)
SOCCORRER 3000	4 x 60 Ah	11,5		2 x Feka VS 750 (80/40 min.)
SOCCORRER 3000	4 x 100 Ah	11,5	-	2 x Feka VS 750 (132/66 min.)

SISTEMI DI EMERGENZA

PRINCIPALI VISUALIZZAZIONI DEL DISPLAY

I sistemi Soccorrer sono dotati di un display con un software guidato e di facile utilizzo che visualizza:

La Tensione elettrica di linea espressa in V (Volt);

La Potenza assorbita dalla elettropompa in presenza di energia elettrica di rete espressa in VA (Volt Ampère);

La Corrente di ricarica delle batterie in presenza di energia elettrica di rete espressa in A (Ampère);

La Tensione delle batterie in V (Volt);

La Corrente massima di sovraccarico (overload) espressa in A (Ampère);

Numero di avviamenti dell'elettropompa in presenza dell'energia elettrica di rete;

Numero di avviamenti dell'elettropompa utilizzando l'energia delle batterie;

Il tempo di funzionamento dell'elettropompa espresso in ore e minuti assorbendo energia dalle batterie;

Il tempo totale di funzionamento dell'elettropompa espresso in ore e minuti (batterie + rete elettrica);

Il numero di ore e il tempo di funzionamento, programmabili dall'utente, per eseguire l'autotest (solo per elettropompe con galleggiante collegato direttamente al sistema);

Il numero di serie:

La versione del microprocessore.

DATI MACCHINA

V1 228V P: 486VA Vb50.9V Ib: 4.7A

> MATRICOLA 1000-07-0830

TEST

TEST 1↑/2↓ ENTER 230 26.2 P 427VA

TEMPO FRA I TEST ↓↑ 44 ORE ENTER

DURATA DEI TEST ↑↓ 12 sec. ENTER

STORICO

INTERVENTI EPS IN RETE : 41900

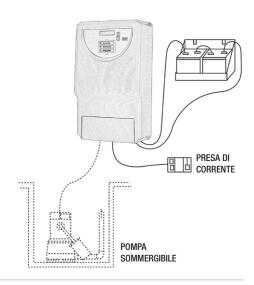
INTERVENTI EPS SU BATT.: 06801

USCITA RETE ON 00024 b 15 min.

USCITA INV. ON 00012 h 05 min.

	RICI	DATI IDRAULICI																		
MODELLO	In	_	MINALE	Q m³/h	0	1	2	3	4,5	5	6	7	7,5	9	10	12	15	18	24	30
	Α	kW	HP	I/min	0	16,6	33,3	50	75	83,3	100	116,6	125	150	166,6	200	250	300	400	500
NOVA 180 M-A	0,9	0,22	0,3		4,95	4,45	3,9	3,15	1,7	1,15										
NOVA 180 M-NA	0,9	0,22	0,3		4,95	4,45	3,9	3,15	1,7	1,15										
NOVA 200 M-NA	1,5	0,22	0,3		7,1	6,6	6,1	5,6	4,9	4,7	4,2	3,7	3,5	2,8	2,35	1,5				
NOVA 300 M-A	1,6	0,22	0,3		7,18	6,7	6,23	5,8	5,2	5	4,6	4,2	4	3,42	3	2,2				
NOVA 600 M-A	3,4	0,55	0,75		10,2	9,7	9,3	8,9	8,3	8,1	7,8	7,4	7,2	6,6	6,1	5	3,1			
NOVA 600 M-NA	3,4	0,55	0,75		10,2	9,7	9,3	8,9	8,3	8,1	7,8	7,4	7,2	6,6	6,1	5	3,1			
FEKA 600 M-A	4,3	0,55	0,75		7,45	7,1	6,75	6,45	6,1	5,95	5,7	5,45	5,35	4,95	4,7	4,1	2,8			
FEKA 600 M-NA	4,3	0,55	0,75		7,45	7,1	6,75	6,45	6,1	5,95	5,7	5,45	5,35	4,95	4,7	4,1	2,8			
FEKA VS-VX 550 M-A	4,2	0,55	0,75		7,4	7,3	7,2	6,9	6,7	6,6	6,2	6,0	5,9	5,6	5,2	4,1	3,2	1,8		
FEKA VS-VX 550 M-NA	4,2	0,55	0,75	Н	7,4	7,3	7,2	6,9	6,7	6,6	6,2	6,0	5,9	5,6	5,2	4,1	3,2	1,8		
FEKA VS-VX 750 M-A	5,13	0,75	1	(m)	9,6	9,5	9,4	9,2	9,0	8,9	8,5	8,3	8,2	7,6	7,2	6,7	5,6	4,3	1,9	
FEKA VS-VX 750 M-NA	5,13	0,75	1		9,6	9,5	9,4	9,2	9,0	8,9	8,5	8,3	8,2	7,6	7,2	6,7	5,6	4,3	1,9	
FEKA VS-VX 1000 M-A	6,63	1,00	1,36		11,8	11,7	11,6	11,3	11,1	11,0	10,5	10,3	10,2	9,8	9,4	9,0	8,0	6,8	4,1	
FEKA VS-VX 1000 M-NA	6,63	1,00	1,36		11,8	11,7	11,6	11,3	11,1	11,0	10,5	10,3	10,2	9,8	9,4	9,0	8,0	6,8	4,1	
FEKA VS-VX 1200 M-A	8,63	1,20	1,60		14	13,9	13,8	13,4	13,2	13,0	12,8	12,6	12,5	12,0	11,6	11,2	10,1	9,0	6,7	
FEKA VS-VX 1200 M-NA	8,63	1,20	1,60		14	13,9	13,8	13,4	13,2	13,0	12,8	12,6	12,5	12,0	11,6	11,2	10,1	9,0	6,7	
DRENAG 1000 M-A / M-NA	6	1	1,36		15,3			13,7	13,2	13	12,1	11,5	11,2	10,5	10	8,7	6,8	4,7		
DRENAG 1200 M-A / M-NA	7,5	1,2	1,6		17			15,4	14,7	14,5	13,8	13,4	13	12,4	11,8	10,7	9	7,3	3,3	
DRENAG 1400 M	9,2	1,1	1,5		19,2						17	16,5	16,3	15,9	15,6	14,6	13,5	12,1	9	5,5
FEKA 1400 M	8,5	1,1	1,5		13,9						12	11,6	11,4	11	10,8	9,9	8,9	7,8	5,7	3,4

SISTEMI DI EMERGENZA

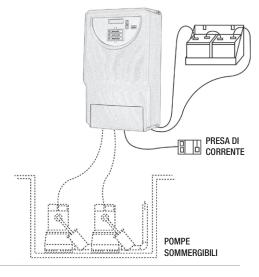

SINGOLA USCITA (1 POMPA)

II KIT SOCCORRER comprende:

- Centrale antiallagamento predisposta per il collegamento di 1 elettropompa.
- Batterie sigillate *.
- Mensole porta-batterie (escluso batterie da 180 Ah).
- Kit cavi per il collegamento delle batterie.
- Manuale di istruzioni.

Le pompe, i galleggianti e gli altri accessori, vanno ordinati a parte.

* Incorporate per il modello Soccorrer 500



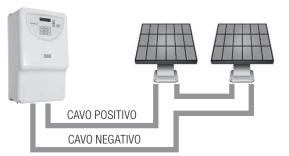
DOPPIA USCITA (2 POMPE)

II KIT SOCCORRER comprende:

- Centrale antiallagamento predisposta per il collegamento di 2 elettropompe.
- Batterie sigillate.
- Mensole porta-batterie (escluso batterie da 180 Ah).
- Kit cavi per il collegamento delle batterie.
- Manuale di istruzioni.

Le pompe, i galleggianti e gli altri accessori, vanno ordinati a parte.

COLLEGAMENTI PANNELLI FOTOVOLTAICI (OPZIONALE)


I pannelli fotovoltaici per caricare le batterie, per utilizzo in isola, devono essere collegati nei connettori di ingresso posti nella parte sottostante l'apparecchiatura.

COLLEGAMENTI

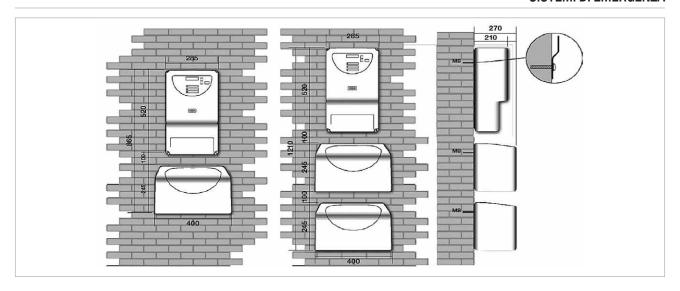
E.P.S. 600 E.P.S. 1000Gold

Tensione max ingresso a vuoto 100V Potenza max pannelli 800W

COLLEGAMENTI

E.P.S. 1500 E.P.S. 2000 E.P.S. 2500 E.P.S. 3000 E.P.S. 4000 E.P.S. 5000

Tensione max ingresso a vuoto 100V Potenza max pannelli 800W


SISTEMI DI EMERGENZA

DATI TECNICI E CONFIGURAZIONI

DATI TECNICI	SOCCORRER 500	SOCCORRER 600	SOCCORRER 1000	SOCCORRER 1500	SOCCORRER 2000	SOCCORRER 2500	SOCCORRER 3000	SOCCORRER 4000	SOCCORRER 5000	
Tensione di alimentazione		MONOFASE 230V ± 10 % 50 HZ								
Tensione di uscita		MONOFASE 230V ± 10 % 50 HZ								
Frequenza di uscita		50 Hz ± 0,005 %								
Tensione batteria	48 Vcc	48 Vcc 24 Vcc 48 Vcc								
Limiti di funzionamento batteria	40 Vcc	20 Vcc				40 Vcc				
Rendimento	97%	93%				97%				
Tempo di inserimento					1 secondo					
Commutazione rete batteria					Automatica					
Potenza max carica batterie da rete					400 W					
Potenza max carica batterie da fotovoltaico		800 W								
Tensione ingresso pannello fotovoltaico		100 Volt								
Funzionamento		Con regolazione MPPT								
Tempi di ricarica	8/10 ore		Da ri	ete 8/10 ore - Rete	+ fotovoltaico (500 v	v) 4/5 ore - Solo fot	ovoltaico (500 w) 7/9	9 ore		
Consumo da rete con batteria carica					18 W					
Potenza max erogabile	500 VA	600 VA	1200 VA	1500 VA	2000 VA	2500 VA	3000 VA	4000 VA	5000 VA	
Corrente max erogabile	2,2 A	2,6 A	5,3 A	6,5 A	8,7 A	11 A	13 A	17,4 A	22 A	
Corrente max elettropompa motore	1,9 A	2,3 A	4,2 A	5,7 A	7,6 A	9,6 A	11,5 A	15,2 A	20 A	
Corrente max di spunto	10 A	10 A	20 A	20 A	25 A	30 A	30 A	50 A	50 A	
Temperatura di esercizio					-20 °C - 60 °C					
Umidità	≤ 90% non condensata									
Grado di protezione		IP 21								
Protezioni elettroniche				Sovraccarico / Co	orto circuito / Tensior	e minima batteria				
Protezioni elettriche				Fusibile	e ingresso / uscita e	batteria				
Normative			CEI EN 62	2040 - 1 - CELEN	62040 - 2 - CEI EI	N 60204 - 1 - CEI	EN 50171			

SISTEMI DI EMERGENZA

MODELLO	D	PES0		
MODELLO	L/A	L/B	Н	Kg
SOCCORRER 500	285	210	520	32
SOCCORRER 600	285	210	520	18
SOCCORRER 1000	285	210	520	26
SOCCORRER 1500	285	210	520	30
SOCCORRER 2000	285	210	520	36
SOCCORRER 2500	285	210	520	40
SOCCORRER 3000	285	210	520	44
SOCCORRER 4000	285	210	520	46
SOCCORRER 5000	285	210	520	55

ACCESSORI A RICHIESTA DA ORDINARE SEPARATAMENTE

		1° GALLI	EGGIANTE	2° GALLE	EGGIANTE	BATTERIA ERMETICA	ALLARME ACUSTICO VISIVO	
1	TABELLA ACCESSORI			*				
TIPO POMPA		M-NA	M-A	M-NA	M-A			
	Uscita singola	•	\otimes	0	\otimes	0	0	
SOCCORRER Uscita doppia (in alternanza)		•	\otimes	0	\otimes	0	0	
	Uscita doppia (in simultanea)	•	•	•	\otimes	0	0	

- Obbligatorio
- O Sicurezza / Opzionale
- ⊗ Non necessario

SISTEMI DI EMERGENZA

ACCESSORI

GALLEGGIANTE

5 metri

10 metri

15 metri

20 metri

BATTERIE ERMETICHE

Batterie ermeticamente sigillate

Zero manutenzione

Maggiore durata

Power check per controllo visivo dello stato di carica

Tecnologia al Piombo/Calcio/Stagno

Doppio coperchio termosaldato con integrata pastiglia "Flame Arrest"

Poli anticorrosione

Fondo cassa con "Frex Ribs" assorbimento vibrazioni

Tensione nominale 12VDC

Vita media batterie 4/5 anni.

	:::::
ES EL IN MARK	A Comment

MODELLO	DIM	PES0		
WODELLO	L	Н	P	Kg
BATTERIA 60AH ERMETICA	242	190	175	14,4
BATTERIA 90AHERMETICA	352	190	175	23,3

SUPPORTO BATTERIE *

(FORNITO SOLO PER VERSIONI 100 AH, 90 AH, 60 AH, 45 AH)

* ogni supporto contiene una sola batteria.

ALLARME ACUSTICO E VISIVO

Sirena lampeggiante autoalimentata dalle batterie del sistema antiallagamento completa di galleggiante per l'attivazione.

NGPANEL

QUADRI ELETTRONICI DI PROTEZIONE E COMANDO

DATI TECNICI

Alimentazione Monofase: 1 x 230 VAC 50/60 Hz Alimentazione Trifase: 3×400 VAC - 3×575 VAC 50/60 Hz

Corrente massima di impiego:
1 x 29 A (1 x 230 VAC - 1 x 110 VAC)
1 x 12 A (3 x 400VAC - 3 x 230 VAC)
2 x 12 A (1 x 230 VAC - 1 x 110 VAC)
2 x 12 A (3 x 400VAC - 3 x 230 VAC)
2 x 20 A (1 x 230 VAC - 1 x 110 VAC)
1 x 8 A (3 x 575 VAC)

2 x 8 A (3 x 575 VAC) **Grado di protezione:** IP55 e NEMA 3R

Massima temperatura ambiente: -10°C +50°C
Condensatore di avviamento: fomiti come KIT accessorio

Altitudine max: 1000 s.l.m. Certificazioni: CE, UL/CSA

Quadro elettrico per il controllo e la protezione di pompe monofase o trifase in ambiti residenziali, commerciali e in allevamenti, impiegate per lo svuotamento di acque di scarico e di drenaggio o il riempimento (trasferimento) di acque in serbatoi.

Il quadro elettrico protegge le pompe e consente il loro funzionamento in modalità automatica quando collegate a galleggianti, sonde di livello, o sonda di profondità.

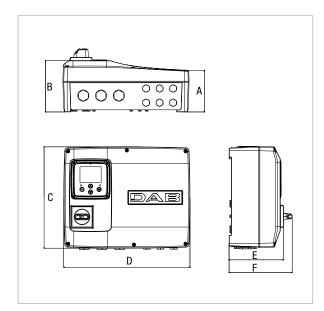
Il display grafico permette un facile utilizzo grazie alla procedura guidata (wizard) di configurazione in più lingue. È possibile scegliere la modalità di utilizzo (riempimento o svuotamento) e il tipo di controlli (galleggianti, sonde di livello o di profondità) oppure scorrere lo storico degli allarmi.

Il quadro elettrico ha una cassa in materiale termoplastico autoestinguente, con grado di protezione IP55 e NEMA 3R.

Al quadro sono abbinabili vari accessori, come i controlli (galleggianti, sonde di livello, sonda di profondità) e i condensatori per pompe monofase da installare internamente nel quadro elettrico.

Nel quadro sono presenti: morsetti di collegamento all'alimentazione monofase oppure trifase (L1, L2, L3); collegamento attraverso i contatori delle pompe monofase oppure trifase (U-V-W); morsetti di collegamento per la protezione termica; tre contatti di uscita per segnalazione allarme tramite lampeggiante o sirena.

NgPanel è dotato di connettività Bluetooth e Wi-Fi, ed è gestibile tramite app DConnect.


In caso di assenza di connessione Wi-Fi, è possibile utilizzare il Kit Modem Wi-Fi di DAB, connettendolo direttamente alla porta USB dedicata, presente all'interno del quadro.

Tra gli allarmi visualizzabili ci sono: surriscaldamento o un sovraccarico della pompa, infiltrazioni d'acqua in camera olio, guasti o malfunzionamenti, un numero eccessivo di riavvi. Vi è la possibilità di calcolare la quantità di acqua pompata fuori dalla vasca di raccolta.

NGPANEL

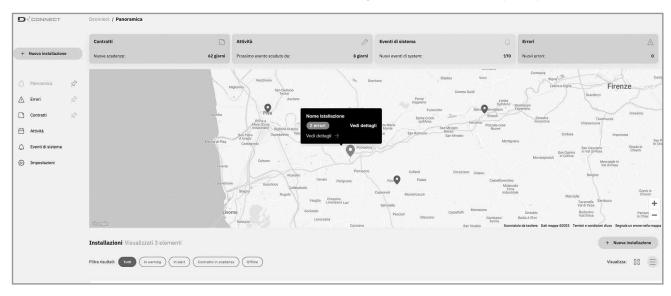
QUADRI ELETTRONICI DI PROTEZIONE E COMANDO

MODELLO	A B		С	D	Е	F	DIMENSIONI IMBALLO			PESO
							L/A	L/B	Н	Kg
NGPANEL 1 POMPA 29 A	120	145	285	320	155	180	435	243	313	3,7
NGPANEL 2 POMPE 20 A	120	145	285	320	155	180	435	243	313	3,7
NGPANEL 2 POMPE 12 A	120	145	285	320	155	180	435	243	313	3,7

MODELLO	ALIMENTAZIONE 50/60 Hz	AVVIAMENTO	CORRENTE MASSIMA POMPA A	POTENZA MASSIMA POMPA (P2) kW
	1 x 230 VAC - 1 x 110 VAC		29	4,5
NGPANEL 1 POMPA 29 A	3 x 400 VAC - 3 x 230 VAC	DIRETTO	12	5,5
	3 x 575 VAC		8	5,5
	1 x 230 VAC - 1 x 110 VAC		20	2,5
NGPANEL 2 POMPE 20 A	3 x 400 VAC - 3 x 230 VAC	DIRETTO	12	5,5
	3 x 575 VAC		8	5,5
	1 x 230 VAC - 1 x 110 VAC		12	1,5
NGPANEL 2 POMPE 12 A	3 x 400 VAC - 3 x 230 VAC	DIRETTO	12	5,5
	3 x 575 VAC		8	5,5

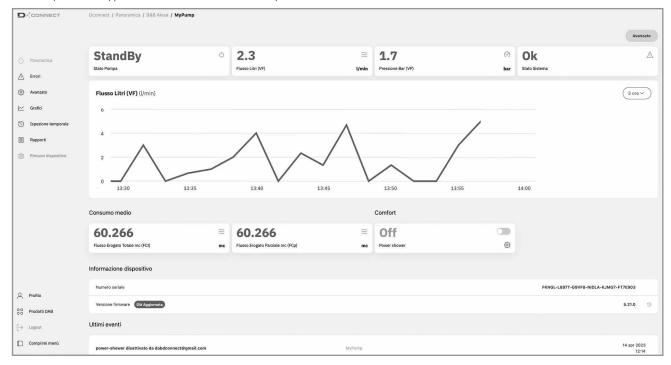
SERVIZIO DIGITALE DCONNECT

CONTROLLO REMOTO PER IMPIANTI RESIDENZIALI E COMMERCIALI DOTATI DI ELETTRONICA


Il servizio DConnect permette di gestire le proprie installazioni da remoto, in maniera semplice e intuitiva, senza necessità di server o di personale specializzato. Con DConnect gestirai le tue installazioni da remoto, come se ti trovassi fisicamente davanti alle pompe.

Potrai anche ottimizzare il funzionamento dei tuoi impianti utilizzando i grafici di funzionamento del sistema. Infine sarai informato in maniera tempestiva delle eventuali anomalie presenti nell'impianto.

IL SERVIZIO PERMETTE DI:


MONITORARE IN MODO SEMPLICE I TUOI IMPIANTI

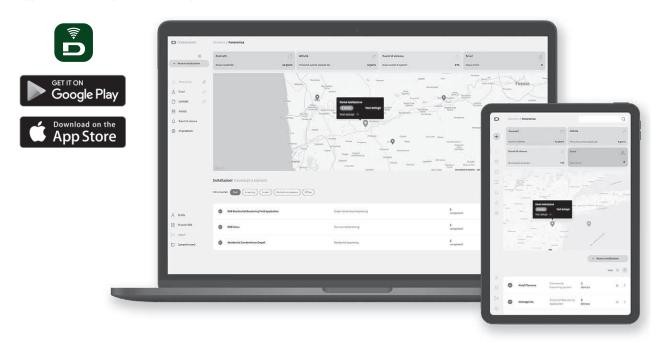
Il colore indica lo stato delle installazioni: se è verde è tutto ok; se è arancione è meglio controllare; se è rossso c'è qualche problema.

CON LA GESTIONE REMOTA È COME ESSERE PRESENTE SUGLI IMPIANTI

Tramite il portale o le app controlli le installazioni in modo semplice e immediato.

ALLARM

In caso di anomalie, DConnect ti avvisa in modo contrallare subito cosa succede oppure organizzare un intervento tempestivo sul posto prima che diventi un'emergenza per il tuo cliente.


SERVIZIO DIGITALE DCONNECT

CONTROLLO REMOTO PER IMPIANTI RESIDENZIALI E COMMERCIALI DOTATI DI ELETTRONICA

Per usare il servizio DConnect bisogna essere registrati e avere prodotti connessi.

Collegati al sito: https://dconnect.dabpumps.com da un browser Internet come Microsoft Edge o Google Chrome.

Le app DCONNECT DAB per Android e iOS possono essere scaricate sui relativi store:

CHE PRODOTTI PUOI GESTIRE TRAMITE IL SERVIZIO DCONNECT?

NgDrive, NgPanel, MCE/P, MCE/C, ADAC, Active driver Plus, Ebox, Evoplus, Esybox, Esybox mini, Esybox Diver, Dtron 3, Esybox Max.

Per maggiori informazioni consulta: www.internetofpumps.com

Servizio digitale semplice e intuitivo per il monitoraggio da remoto dei prodotti DAB: permette di trovare tutte le informazioni di proprio interesse; controllare il funzionamento degli impianti o modificarne i parametri di settaggio.

APP DAB LIVE!

Disponibile per Esybox mini³

Facilita gli utenti finali nella supervisione degli impianti domestici per ottimizzare i consumi e massimizzare il comfort anche grazie alle funzioni Power Shower e Sleep Mode.

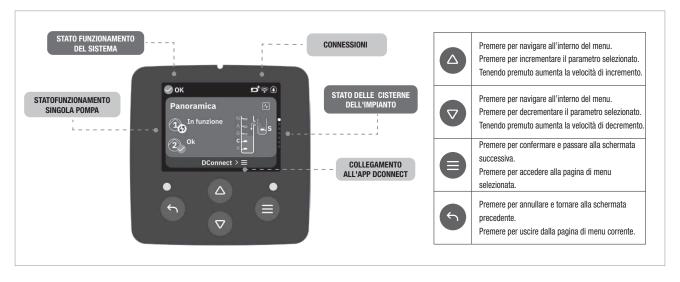
SERVIZIO DIGITALE DCONNECT

INTERFACCIA UTENTE E PROTOCOLLI

NGPANFI

IL SISTEMA INTELLIGENTE DAB

Combinato con **DAB Virtual Cockpit** e **DConnect**, **NgPanel** diventa un sistema intelligente con un'esperienza di utilizzo intuitiva ed efficace.


La messa in funzione è rapida, grazie alla procedura guidata che in 5 passaggi e 5 minuti permette di avviare l'impianto.

INTERFACCIA UTENTE

Dall'homepage, la logica di scorrimento verticale consente di accedere ai diversi menu e alle diverse funzioni in modo rapido e sempre coerente. In una sola schermata chiara e ben leggibile, inoltre, **DAB Virtual Cockpit** sintetizza tutte le informazioni da monitorare affinché il sistema gestito con **NgPanel** lavori al meglio.

Pulsanti a croce per una facile interazione, e simbologia intuitiva per navigare nel menù di configurazione.

PROTOCOLLI DI RETE

Bluetooth: standard di trasmissione dati senza fili, a corto raggio (locale). E' possibile collegare dispositivi come, telefoni cellulari, personal computer, tablet. Collegamento tramite smartphone, direttamente all'Ngpanel nel caso di configurazione da telefono tramite Dconnect APP.

WI-FI: accesso alla rete internet senza uso di fili per dispositivi come smart-phone, tablet o computer. Collegamento diretto all'Ngpanel tramite Dconnect APP da remoto utilizzando l'indirizzo IP.

ACCESSORI

NGPANEL

DESCR	IZIONE
GALLEGGIANTE	5 METRI 10 METRI 15 METRI 20 METRI
GALLEGGIANTE A BULBO	10 METRI 20 METRI
SENSORE DI PROFOND CAVO PER ACQUE CHI <i>I</i>	
SONDA DI LIVELLO PE	R ACQUE CHIARE

DESCRIZIONE
LAMPEGGIANTE ARANCIONE 230V dotato di lampadina incandescenza 5W. (Le uscite per gli allarmi sono contatti puliti e devono essere alimentati)
ALLARME ACUSTICO - 230 V - 50 HZ (Le uscite per gli allarmi sono contatti puliti e devono essere alimentati)

È possibile reperire ulteriori informazioni e dettagli tecnici anche da DNA, collegandosi all'indirizzo: dna.dabpumps.com

QUADRI ELETTRONICI DI PROTEZIONE E COMANDO

EBOX

DATI TECNICI

Tensione nominale di alimentazione:

Ebox plus 1x 230 V / 3 x 230 V - 3 x 400 V (selezione automatica)

Ebox basic 1x 230 V **Frequenza:** 50 - 60 Hz **Potenza massima di impiego:** Ebox plus 5,5 kWatt + 5,5 kW

Ebox basic 2,2 kWatt + 2,2 kW

Corrente massima di impiego: 12 A + 12 A

Condensatore di avviamento: forniti come KIT come accessorio Limiti di impiego temperatura ambiente: 0° C + 50° C

Umidità relativa all'aria: 90% a 20° C

Altitudine max: 1000 s.l.m. Grado di protezione: IP 54

APPLICAZIONI

L'Ebox è un quadro elettronico di controllo e comando, che integra in sé tutte le funzionalità e le protezioni necessarie per la realizzazione di un gruppo di pompaggio per drenaggio, riempimento e pressurizzazione.

EBOX PLUS è un quadro elettronico di comando per la protezione ed il funzionamento automatico di una o due elettropompe sommergibili o di pressurizzazione sia monofasi che trifasi, installate in ambito domestico, civile e industriale. Grazie alla possibilità di regolazione della corrente, il quadro Ebox è compatibile con tutti i modelli di pompa con una corrente compresa fra 1 e 12 A con potenza fino a 5.5Kw.

EBOX BASIC è un quadro elettronico di comando per la protezione ed il funzionamento automatico di una o due elettropompe sommergibili o di pressurizzazione monofasi per applicazioni domestiche. Il quadro Ebox è compatibile con tutti i modelli di pompa monofase con una corrente compresa fra 1 e 12 A con potenza fino a 2.2Kw come riportato dalla tabella compatibilità prodotti.

COSTRUZONE DEL QUADRO

Fornito su cassetta in materiale termoplastico autoestinguente, con un grado di protezione IP55, il quadro protegge le elettropompe dalle condizione anomale come: sovraccarichi e sovratemperatura a riarmo automatico, cortocircuiti con fusibili (solo modello Plus), sovracorrenti delle pompe (protezione amperometrica), tensioni anomali, marcia a secco, rapidi avviamenti, guasto del del sensore di pressione o incoerenza dei comandi di protezione esterni.

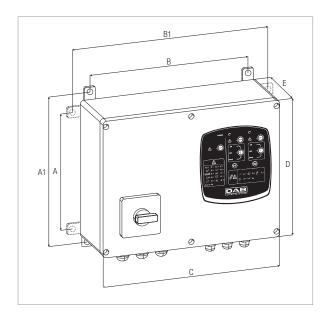
COMPONENTI A FRONTE QUADRO

- Sezionatore generale con blocco porta lucchettabile.
- Pulsanti selezione funzionamento AUT OFF MAN.
- Pulsanti RESET allarmi.
- Spie segnalazione marcia, blocco, allarmi,
- Display nei modelli PLUS D e BASIC D

COMPONENTI INTERNI AL QUADRO

- Scheda elettronica di comando e controllo, fusibili di protezione, contattori.
- Morsetti di collegamento all'alimentazione monofase (L-N nella versione BASIC) oppure trifase (L1-L2-L3 nella versione PLUS).
- Morsetti di collegamento alle elettropompe monofase (L-N nella versione BASIC) oppure trifase (U-V-W nella versione PLUS).
- Morsetti di collegamento ai pressostati, sensori, protezione termica KK, contatti N.O segnalazioni allarme. Dip switch di selezione funzionamento: galleggianti o sensore di livello, riempimento o svuotamento vasche, funzionamento con una o due pompe anche nella versione con display.

SOFTWARE


Nei modelli con display il software

- Guida passo passo la prima installazione nella selezione delle impostazioni corrette a seconda dell'applicazione interessata.
- Rende visibile in modo chiaro ed immediato lo stato del quadro e delle pompe.
- Facilita di molto qualsiasi modifica di messa a punto dei livelli rispetto alla versione precedente in quanto non occorre più metter mano ai dip switch all'interno del quadro.

QUADRI ELETTRONICI DI PROTEZIONE E COMANDO

EBOX

MODELLO		A1	В	B1	С	D	Е	DIMENSIONI IMBALLO		PESO Kg	
								L/A	L/B	Н	Ny
EBOX BASIC 230/50-60	212	265	282	337	320	260	120	250	430	310	4
EBOX PLUS 230-400V/50-60	212	265	282	337	320	260	120	250	430	310	5

			DATI EL	ETTRICI		
MODELLO	ALIMENTAZIONE	AVVIAMENTO	P2 NOI	MINALE	CORRENTE MAX	DISPLAY
	50 HZ		kW x2	HP x2	A	DIOI LAI
EBOX BASIC 230/50-60	1X230 V~	diretto	2,2	3	12+12	
	1X230 V~		2,2	3		
EBOX PLUS 230-400V/50-60	3X230 V~	diretto	3	4	12+12	
	3X400 V~		5,5	7,5		

ACCESSORI

QUADRI ELETTROMECCANICI DI PROTEZIONE E COMANDO

ED PER 1 POMPA

foto indicativa

DATI TECNICI

Tensione nominale di alimentazione: $230V\ 1\sim\pm\ 10\%$

400V 3~ ± 10%

Frequenza: 50-60 Hz

Limiti di impiego temperatura ambiente: 10°C +40°C Limite temperatura ambiente di stoccaggio: -25°C + 55°C

Umidità relativa (senza condensazione):

50% a 40°C MAX (90% a 20°C) **Grado di protezione:** IP55

Costruzione dei quadri: secondo EN 60204-1 e EN 60439-1

APPLICAZIONI

Quadri per la protezione ed il controllo automatico tramite comandi digitali (galleggianti, pressostati, timer,...) di 1 elettropompa monofase o trifase, ad avvio diretto o stellatriangolo Y/D.

COSTRUZIONE DEL QUADRO

Costruzione dei quadri secondo EN 60204-1 e EN 60439-1.

Fornito su cassetta in materiale termoplastico autoestinguente, completa di staffe per il fissaggio a parete.

Il quadro è autoprotetto e protegge l'elettropompa da sovraccarichi, cortocircuiti, mancanza fase a riarmo manuale e sovratemperature a riarmo automatico.

COMPLETO DI:

Dispositivo sezionatore della linea di alimentazione con maniglia di blocco porta lucchettabile.

Fusibili circuiti ausiliari.

Protezione magnetotermica su ogni motore con scala regolabile.

Trasformatore autoprotetto per l'alimentazione a 24V dei comandi esterni.

Morsetti per il collegamento dell'elettropompa e dei galleggianti di protezione e controllo minimo/massimo livello (o max/min pressione per mezzo di pressostati, ecc.).

Morsetti senza potenziale per la segnalazione tramite un allarme sonoro o luminoso della marcia a secco o troppo pieno o sovrappressione.

Morsetti per il collegamento dei sensori temperatura provenienti dal motore. Fornito di serie di ponticello da rimuovere in caso di utilizzo. (VEDI

Commutatore in fronte al quadro per il funzionamento manuale - 0 - automatico dell'elettropompa.

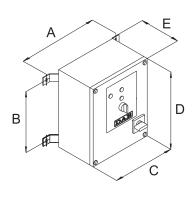
Temporizzatore scambio regolabile da 0"÷ 30" solo per i quadri ad avviamento Y/D

SEGNALAZIONE IN FRONTE AL QUADRO:

Indicazione luminosa rossa che indica l'intervento della protezione amperometrica

Indicazione luminosa verde che segnala pompa in marcia

Indicazione luminosa bianca che indica il corretto funzionamento dei circuiti ausiliari


Indicazione luminosa rossa per la marcia a secco o max pressione

ED PER 1 POMPA - QUADRI ELETTROMECCANICI DI PROTEZIONE E COMANDO

		DATI ELETTRICI ALIMENTAZIONE CORRENTE PROTEZIONE MOTOPROTETTORE MODIII O												
MODELLO	ALIMENTAZIONE 50 HZ	AVVIAMENTO	CONDENSATORE	kW	HP	CORRENTE MAX	PROTEZIONE TERMICA	MOTOPROTETTORE KK	MODULO SONDA OLIO					
ED0.1M	1X220 - 240 V~	diretto	-	0,1	0,1	1	0,63-1A							
ED0,3M	1X220 - 240 V~	diretto	-	0,2	0,3	2	1-1,6A							
ED0,75M	1X220 - 240 V~	diretto	-	0,6	0,75	4	2,5-4A							
ED1M	1X220 - 240 V~	diretto	-	0,7	1	6	4-6,3A							
ED1,5M	1X220 - 240 V~	diretto	-	1,1	1,5	10	6,3-10A							
ED2M	1X220 - 240 V~	diretto	-	1,5	2	16	10-16A							
ED2,4M	1X220 - 240 V~	diretto	-	1,8	2,4	20	16-20A							
ED3M 40UF	1X220 - 240 V~	diretto	40	2,2	3	10	6,3-10A	•						
ED3MHS	1X220 - 240 V~	diretto	40uF+250μF	2,2	3	10	6,3-10A	•						
ED0,08T	3X400 V~	diretto	-	0,1	0,08	1	0,4-0,63A		predisposto					
ED0,5T	3X400 V~	diretto	-	0,4	0,5	2	1-1,6A		predisposto					
ED1T	3X400 V~	diretto	-	0,7	1	3	1,6-2,5A		predisposto					
ED1,5T	3X400 V~	diretto	-	1,1	1,5	4	2,5-4A		predisposto					
ED2,5T	3X400 V~	diretto	-	1,8	2,5	6	4-6,3A	•	predisposto					
ED4T	3X400 V~	diretto	-	2,9	4	10	6,3-10A	•	predisposto					
ED8T	3X400 V~	diretto	-	5,9	8	16	10-16A	•	predisposto					
ED11T	3X400 V~	diretto	-	8,1	11	20	16-20A	•	predisposto					
ED14T	3X400 V~	diretto	-	10,3	14	25	20-25A	•	predisposto					
ED15T	3X400 V~	diretto	-	11,0	15	32	25-32A	•	predisposto					
ED7,5T SD	3X400 V~	Υ/Δ	-	5,5	7,5	16	10-16A	•	standard					
ED15T SD	3X400 V~	Υ/Δ	-	11,0	15	25	18-25A	•	standard					
ED20T SD	3X400 V~	Υ/Δ	-	14,7	20	32	23-32A	•	standard					
ED25T SD	3X400 V~	Υ/Δ	-	18,4	25	45	32-45A	•	standard					
ED30T SD	3X400 V~	Υ/Δ	-	22,1	30	63	40-63A	•	standard					

11005110					_	DIME	NSIONI IME	BALLO	PES0
MODELLO	Α	В	C	D	Е	L/A	L/B	Н	Kg
ED0.1M	345	248	270	270	200	320	420	250	7
ED0,3M	345	248	270	270	200	320	420	250	7
ED0,75M	345	248	270	270	200	320	420	250	7
ED1M	345	248	270	270	200	320	420	250	7
ED1,5M	345	248	270	270	200	320	420	250	7
ED2M	345	248	270	270	200	320	420	250	7
ED2,4M	345	248	270	270	200	320	420	250	7
ED3M 40uF	345	248	270	270	200	320	420	250	7
ED3MHS	345	248	270	270	200	320	420	250	7
ED0,08T	345	248	270	270	200	320	420	250	7
ED0,5T	345	248	270	270	200	320	420	250	7
ED1T	345	248	270	270	200	320	420	250	7
ED1,5T	345	248	270	270	200	320	420	250	7
ED2,5T	345	248	270	270	200	320	420	250	7
ED4T	345	248	270	270	200	320	420	250	7
ED8T	345	248	270	270	200	320	420	250	7
ED11T	345	248	270	270	200	320	420	250	8
ED14T	345	248	270	270	200	320	420	250	8
ED15T	345	248	270	270	200	320	420	250	8
ED7,5T SD	345	335	270	360	200	320	420	250	9
ED15T SD	345	335	270	360	200	320	420	250	9
ED20T SD	345	335	270	360	255	360	450	450	9
ED25T SD	612	335	540	360	255	620	600	330	15
ED30T SD	612	335	540	360	255	620	600	330	15

QUADRI ELETTROMECCANICI DI PROTEZIONE E COMANDO

E2D PER 2 POMPE

DATI TECNICI

Tensione nominale di alimentazione: $230V 1 \sim \pm 10\%$

400V 3~ ± 10%

Frequenza: 50-60 Hz

Limiti di impiego temperatura ambiente: -10°C +40°C Limite temperatura ambiente di stoccaggio: -25°C + 55°C

Umidità relativa (senza condensazione):

50% a 40°C MAX (90% a 20°C) **Grado di protezione: IP55**

Costruzione dei quadri: secondo EN 60204-1 e EN 60439-1

APPLICAZIONI

Quadri per la protezione ed il controllo automatico tramite comandi digitali (galleggianti, pressostati, timer,...) di 2 elettropompe monofase o trifase, ad avvio diretto o stellatriangolo Y/D.

COSTRUZIONE DEL QUADRO

Costruzione dei guadri secondo EN 60204-1 e EN 60439-1

Fornito su cassetta in materiale termoplastico autoestinquente, completa di staffe per il fissaggio a parete.

Il quadro è autoprotetto e protegge l'elettropompa da sovraccarichi, cortocircuiti, mancanza fase a riarmo manuale e sovratemperature a riarmo automatico.

COMPLETO DI:

Dispositivo sezionatore della linea di alimentazione con maniglia di blocco porta lucchettabile.

Fusibili circuiti ausiliari.

Protezione magnetotermica su ogni motore con scala regolabile.

Trasformatore autoprotetto per l'alimentazione a 24V dei comandi esterni.

Morsetti per il collegamento dell'elettropompa e dei galleggianti di protezione e controllo minimo/massimo livello (o max/min pressione per mezzo di pressostati. ecc.).

Morsetti senza potenziale per la segnalazione tramite un allarme sonoro o luminoso della marcia a secco o troppo pieno o sovrappressione. Morsetti per il collegamento dei sensori temperatura provenienti dal motore. Fornito di serie di ponticello da rimuovere in caso di utilizzo. (VEDI

Commutatore in fronte al quadro per il funzionamento manuale - 0 - automatico dell'elettropompa.

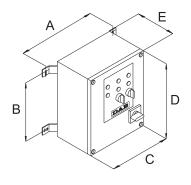
Temporizzatore scambio regolabile da 0"÷ 30" solo per i quadri ad avviamento Y/D

SEGNALAZIONE IN FRONTE AL QUADRO:

Indicazione luminosa rossa che indica l'intervento della protezione amperometrica

Indicazione luminosa verde che segnala pompa in marcia

Indicazione luminosa bianca che indica il corretto funzionamento dei circuiti ausiliari


Indicazione luminosa rossa per la marcia a secco o max pressione

E2D PER 2 POMPE - QUADRI ELETTROMECCANICI DI PROTEZIONE E COMANDO

					DATI EL	LETTRICI			
MODELLO	ALIMENTAZIONE 50 HZ	AVVIAMENTO	CONDENSATORE	kW	НР	CORRENTE MAX	PROTEZIONE TERMICA	MOTOPROTETTORE KK	MODULO SONDA OLIO
E2D0,6M	1X220 - 240 V~	diretto	-	0,2	0,3	2	1-1,6A		
E2D1,5M	1X220 - 240 V~	diretto	-	0,6	0,75	4	2,5-4A		
E2D2M	1X220 - 240 V~	diretto	-	0,7	1	6	4-6,3A		
E2D3M	1X220 - 240 V~	diretto	-	1,1	1,5	10	6,3-10A		
E2D4M	1X220 - 240 V~	diretto	-	1,5	2	16	10-16A		
E2D4,8M	1X220 - 240 V~	diretto	-	1,8	2,4	20	16-20A		
E2D6M 40UF	1X220 - 240 V~	diretto	40	2,2	3	10	6,3-10A	•	
E2D6M HS	1X220 - 240 V~	diretto	40μF+250μF	2,2	3	10	6,3-10A	•	
E2D2T	3X400 V~	diretto	-	0,7	1	3	1,6-2,5A		predisposto
E2D3T	3X400 V~	diretto	-	1,1	1,5	4	2,5-4A		predisposto
E2D5T	3X400 V~	diretto	-	1,8	2,5	6	4-6,3A	•	predisposto
E2D8T	3X400 V~	diretto	-	2,9	4	10	6,3-10A	•	predisposto
E2D15T	3X400 V~	diretto	-	5,5	7,5	16	10-16A	•	predisposto
E2D22T	3X400 V~	diretto	-	8,1	11	20	16-20A	•	predisposto
E2D28T	3X400 V~	diretto	-	10,3	14	25	20-25A	•	predisposto
E2D30T	3X400 V~	diretto	-	11,0	15	32	25-32A	•	predisposto
E2D15T SD	3X400 V~	Υ/Δ	-	5,5	7,5	16	10-16A	•	standard
E2D30T SD	3X400 V~	Υ/Δ	-	11,0	15	25	18-25A	•	standard
E2D40T SD	3X400 V~	Υ/Δ	-	14,7	20	32	23-32A	•	standard
E2D50T SD	3X400 V~	Υ/Δ	-	18,4	25	45	32-45A	•	standard
E2D60T SD	3X400 V~	Υ/Δ	-	22,1	30	63	40-63A	•	standard

MODELLO					F	DIMEI	NSIONI IME	BALLO	PESO
MODELLO	A	В	C	D	E	L/A	L/B	Н	Kg
E2D0,6M	345	335	270	360	200	320	420	250	8
E2D1,5M	345	335	270	360	200	320	420	250	8
E2D2M	345	335	270	360	200	320	420	250	8
E2D3M	345	335	270	360	200	320	420	250	8
E2D4M	345	335	270	360	200	320	420	250	8
E2D4,8M	345	335	270	360	200	320	420	250	8
E2D6M 40uF	345	335	270	360	200	320	420	250	8
E2D6M HS	345	335	270	360	200	320	420	250	8
E2D2T	345	335	270	360	200	320	420	250	8
E2D3T	345	335	270	360	200	320	420	250	8
E2D5T	345	335	270	360	200	320	420	250	8
E2D8T	345	335	270	360	200	320	420	250	8
E2D15T	345	335	270	360	200	320	420	250	8
E2D22T	345	335	270	360	200	320	420	250	9
E2D28T	345	335	270	360	200	320	420	250	9
E2D30T	345	335	270	360	200	320	420	250	9
E2D15T SD	612	335	540	360	200	620	600	330	10
E2D30T SD	612	335	540	360	200	620	600	330	10
E2D40T SD	575	600	500	700	275	520	750	300	30
E2D50T SD	670	693	600	800	280	620	850	350	30
E2D60T SD	670	693	600	800	280	620	850	350	30

QUADRI ELETTROMECCANICI DI PROTEZIONE E COMANDO

E3D PER 3 POMPE

DATI TECNICI

Tensione nominale di alimentazione: $230V 1 \sim \pm 10\%$

 $400V 3 \sim \pm 10\%$

Frequenza: 50-60 Hz

Limiti di impiego temperatura ambiente: -10°C +40°C Limite temperatura ambiente di stoccaggio: -25°C + 55°C

Umidità relativa (senza condensazione):

50% a 40°C MAX (90% a 20°C) **Grado di protezione: IP55**

Costruzione dei quadri: secondo EN 60204-1 e EN 60439-1

APPLICAZIONI

Quadri per la protezione ed il controllo automatico tramite comandi digitali (galleggianti, pressostati, timer,...) di 2 elettropompe monofase o trifase, ad avvio diretto o stellatriangolo Y/D.

COSTRUZIONE DEL QUADRO

Costruzione dei guadri secondo EN 60204-1 e EN 60439-1

Fornito su cassetta in materiale termoplastico autoestinquente, completa di staffe per il fissaggio a parete.

Il quadro è autoprotetto e protegge l'elettropompa da sovraccarichi, cortocircuiti, mancanza fase a riarmo manuale e sovratemperature a riarmo automatico.

COMPLETO DI:

Dispositivo sezionatore della linea di alimentazione con maniglia di blocco porta lucchettabile.

Fusibili circuiti ausiliari.

Protezione magnetotermica su ogni motore con scala regolabile.

Trasformatore autoprotetto per l'alimentazione a 24V dei comandi esterni.

Morsetti per il collegamento dell'elettropompa e dei galleggianti di protezione e controllo minimo/massimo livello (o max/min pressione per mezzo di pressostati. ecc.).

Morsetti senza potenziale per la segnalazione tramite un allarme sonoro o luminoso della marcia a secco o troppo pieno o sovrappressione. Morsetti per il collegamento dei sensori temperatura provenienti dal motore. Fornito di serie di ponticello da rimuovere in caso di utilizzo. (VEDI

Commutatore in fronte al quadro per il funzionamento manuale - 0 - automatico dell'elettropompa.

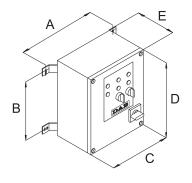
Temporizzatore scambio regolabile da 0"÷ 30" solo per i quadri ad avviamento Y/D

SEGNALAZIONE IN FRONTE AL QUADRO:

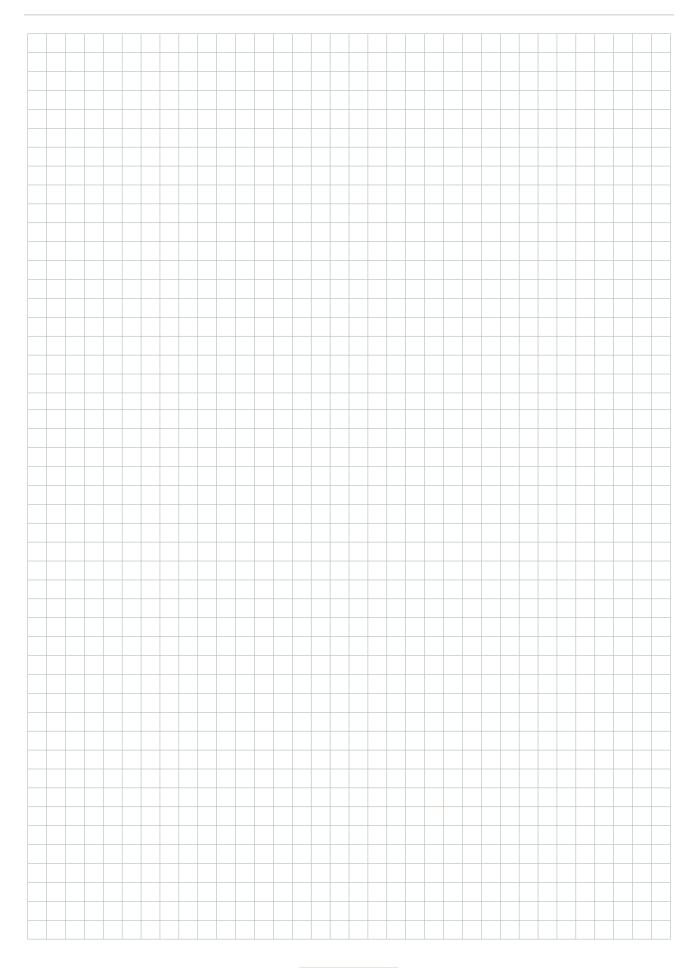
Indicazione luminosa rossa che indica l'intervento della protezione amperometrica

Indicazione luminosa verde che segnala pompa in marcia

Indicazione luminosa bianca che indica il corretto funzionamento dei circuiti ausiliari


Indicazione luminosa rossa per la marcia a secco o max pressione

E3D PER 3 POMPE - QUADRI ELETTROMECCANICI DI PROTEZIONE E COMANDO


					DATI ELE	TTRICI			
MODELLO	ALIMENTAZIONE 50 HZ	AVVIAMENTO	CONDENSATORE	kW	НР	CORRENTE MAX	PROTEZIONE TERMICA	MOTOPROTETTORE KK	MODULO SONDA OLIO
E3D0,9M	1X220 - 240 V~	diretto	-	0,2	0,3	2	1-1,6A		
E3D2,25M	1X220 - 240 V~	diretto	-	0,6	0,75	4	2,5-4A		
E3D3M	1X220 - 240 V~	diretto	-	0,7	1	6	4-6,3A		
E3D4,5M	1X220 - 240 V~	diretto	-	1,1	1,5	10	6,3-10A		
E3D6M	1X220 - 240 V~	diretto	-	1,5	2	16	10-16A		
E3D7,2M	1X220 - 240 V~	diretto	-	1,8	2,4	20	16-20A		
E3D9M 40UF	1X220 - 240 V~	diretto	40	2,2	3	10	6,3-10A	•	
E3D9M HS	1X220 - 240 V~	diretto	40μF+250μF	2,2	3	10	6,3-10A	•	
E3D3T	3X400 V~	diretto	-	0,7	1	3	1,6-2,5A		predisposto
E3D4,5T	3X400 V~	diretto	-	1,1	1,5	4	2,5-4A		predisposto
E3D7,5T	3X400 V~	diretto	-	1,8	2,5	6	4-6,3A	•	predisposto
E3D12T	3X400 V~	diretto	-	2,9	4	10	6,3-10A	•	predisposto
E3D22,5T	3X400 V~	diretto	-	5,5	7,5	16	10-16A	•	predisposto
E3D33T	3X400 V~	diretto	-	8,1	11	20	16-20A	•	predisposto
E3D42T	3X400 V~	diretto	-	10,3	14	25	20-25A	•	predisposto
E3D45T	3X400 V~	diretto	-	11,0	15	32	25-32A	•	predisposto
E3D22,5T SD	3X400 V~	Υ/Δ	-	5,5	7,5	16	10-16A	•	standard
E3D45T SD	3X400 V~	Υ/Δ	-	11,0	15	25	18-25A	•	standard
E3D60T SD	3X400 V~	Υ/Δ	-	14,7	20	32	23-32A	•	standard
E3D75T SD	3X400 V~	Υ/Δ	-	18,4	25	45	32-45A	•	standard
E3D90T SD	3X400 V~	Υ/Δ	-	22,1	30	63	40-63A	•	standard

MODELLO					F	DIME	NSIONI IME	BALLO	PES0
MODELLO	A	В	C	D	E	L/A	L/B	Н	Kg
E3D0,9M	612	335	540	360	200	620	600	330	11
E3D2,25M	612	335	540	360	200	620	600	330	11
E3D3M	612	335	540	360	200	620	600	330	11
E3D4,5M	612	335	540	360	200	620	600	330	11
E3D6M	612	335	540	360	200	620	600	330	11
E3D7,2M	612	335	540	360	200	620	600	330	11
E3D9M 40uF	612	335	540	360	200	620	600	330	11
E3D9M HS	612	335	540	360	200	620	600	330	11
E3D3T	612	335	540	360	200	620	600	330	11
E3D4,5T	612	335	540	360	200	620	600	330	11
E3D7,5T	612	335	540	360	200	620	600	330	11
E3D12T	612	335	540	360	200	620	600	330	11
E3D22,5T	612	335	540	360	200	620	600	330	11
E3D33T	612	335	540	360	200	620	600	330	11
E3D42T	612	335	540	360	200	620	600	330	11
E3D45T	575	600	500	700	275	520	750	300	30
E3D22,5T SD	575	600	500	700	275	520	750	300	30
E3D45T SD	575	600	500	700	275	520	750	300	30
E3D60T SD	670	693	600	800	280	620	850	350	30
E3D75T SD	670	693	600	800	280	620	850	350	30
E3D90T SD	670	693	600	800	280	620	850	350	30

NOTE

POMPE SOMMERGIBILI

INFORMAZIONI GENERALI

VOCABOLI FONDAMENTALI IN USO NELLE POMPE

Qui di seguito elenchiamo il significato dei termini fondamentali, impiegati nel linguaggio corrente, da conoscere per poter parlare di pompe idrauliche. Le grandezze verranno espresse in unità di misura tecniche rimandando alla tabella per la conversione in unità di misura Internazionale ed Anglosassone.

PREVALENZA

Per prevalenza si intende altezza, differenza di livello, dislivello. Quando si dice che una pompa ha una portata di Q litri al secondo ed una prevalenza di 30 metri significa che quella pompa ha la caratteristica di innalzare di 30 metri di altezza (cioè di fargli vincere un dislivello di 30 metri) Q litri al secondo. Per una data pompa la prevalenza è legata alle sue caratteristiche costruttive quali il diametro esterno della girante e la velocità di rotazione mentre è indipendente dal fluido pompato. Questo significa che essa è in grado di innalzare di 30 metri di altezza indifferentemente Q litri al secondo di acqua, benzina, mercurio; sarà soltanto la potenza del motore che dovrà essere diversa per i tre casi.

PESO SPECIFICO DI UN LIQUIDO O FLUIDO

Per peso specifico di un liquido si intende il peso dell'unità di volume del liquido/fluido stesso. Il peso specifico si esprime solitamente in Kg/dm³ o Kg/l dato che un dm³ è pari ad 1 litro.

PRESSIONE

Per pressione si intende il peso per unità di superficie (per es. Kg/cm²) ed è un termine che non va assolutamente confuso con prevalenza. Nel caso infatti dei fluidi, la pressione che un fluido esercita su di una superficie è data dal prodotto della prevalenza (o altezza) del fluido stesso per il suo peso specifico. Per questo motivo lo spessore di alcuni Km di aria sulla superficie terrestre produce ad un livello del suolo una pressione di circa 1 Kg/cm² (pari a circa 1 atmosfera). Se lo stesso spessore anziché di aria fosse di acqua, la pressione sulla superficie terrestre sarebbe 700-800 volte superiore e questo dipenderebbe appunto dal fatto che il peso specifico dell'acqua è 700-800 volte superiore a quello dell'aria.

Tenendo presente che 10 metri di altezza di colonna d'acqua equivalgono a circa 1 Kg/cm², per quanto detto, installando sulla bocca di mandata della pompa un manometro, si misurerebbero i seguenti incrementi di pressione:

a) con benzina	(peso specifico 00,7 Kg/dm3)	$= 00.7 \times 0.001 \times 30 \times 100 = 02.1 \text{ Kg/cm}^2$
b) con acqua	(peso specifico 01,0 Kg/dm ³)	$= 00,1 \times 0,001 \times 30 \times 100 = 03,0 \text{ Kg/cm}^2$
c) con mercurio	(peso specifico 13.6 Kg/dm ³)	$= 13.6 \times 0.001 \times 30 \times 100 = 40.8 \text{ Kg/cm}^2$

PORTATA

Per portata si intende la quantità di liquido o fluido in genere che passa attraverso una superficie, quale la bocca di mandata di una pompa, la sezione di un tubo ecc., nell'unità di tempo.

A seconda delle grandezze usate si possono avere litri al minuto (I/min), litri al secondo (I/s) metri cubi all'ora (m3/h) ecc.

È necessario notare che c'è una analogia perfetta tra elettricità ed idraulica. Basta soltanto ricordare che la prevalenza idraulica è pari alla grandezza analoga alla differenza di potenziale, o voltaggio dell'elettrotecnica e la portata idraulica è analoga alla intensità di corrente o amperaggio dell'elettrotecnica. Anche il comportamento di queste grandezze è identico. Infatti come un cavo o filo troppo sottile non favorisce il passaggio della corrente, altrettanto un tubo di diametro troppo piccolo non favorisce il passaggio di un liquido. Come il passaggio della corrente elettrica attraverso un filo ad un cavo ha bisogno di una differenza di voltaggio, altrettanto la portata di un liquido o fluido attraverso un tubo necessita di una certa prevalenza. Non ci sarà mai movimento di liquido tra due punti di un tubo perfettamente orizzontale ed ambedue con il liquido alla stessa prevalenza. Questo è legato al fatto che, come il cavo oppone una certa resistenza al passaggio della corrente elettrica (resistenza elettrica), così il tubo oppone una certa resistenza al passaggio del fluido, resistenza che dipende dalla qualità del tubo (materiale, forma, presenza di eventuali incrostazioni, ecc.) e dalla sua sezione cioè dalla velocità del fluido attraverso il tubo. Tale resistenza è chiamata perdita di carico.

PERDITA DI CARICO

Per perdita di carico si intende la parte di prevalenza, posseduta dal liquido, perduta nel passaggio attraverso un tubo o una valvola o un filtro ecc. Questa parte di prevalenda perduta non è recuperabile in quanto è una perdita per attrito. Ritornando all'analogia tra fenomeni elettrici ed idraulici, come le perdite nel cavo sono tanto più elevate quanto più elevata è la corrente elettrica che lo attraversa così le perdite di carico sono tanto più elevate quanto maggiore è la velocità del fluido e quindi quanto più piccolo è il diametro del tubo, quanto più strozzata è la valvola e quanto più intasato è il filtro.

POMPA

È una macchina che serve a dare ad un liquido che la attraversa, una certa prevalenza. Prevalenza che può servire a portare il liquido ad un livello superiore oppure a percorrere, dentro un tubo o anche in aria, una certa distanza. Le caratteristiche di una pompa sono:

a) **la portata** (cioè la quantità di liquido spostato nell'unità di tempo)

b) la prevalenza (cioè l'altezza alla quale la macchina è capace di sollevare la portata)

A seconda del rapporto esistente fra portata e prevalenza si possono avere:

- a) pompe di grande prevalenza e piccola portata (pompe a pistoni, pompe rotative, piccole pompe centrifughe)
- b) pompe di portata e prevalenza medie (pompe centrifughe in genere)
- c) pompe di grande portata e bassa prevalenza (pompe elicocentrifughe e pompe ad elica)

POMPE SOMMERGIBILI

Le pompe centrifughe, elicocentrifughe ed a elica sono a moto rotatorio e la loro velocità si misura universalmente in giri al minuto. Per queste macchine operanti ad una data velocità per ogni valore di portata si ha un solo valore di prevalenza. Questo significa che se si vuole aumentare o diminuire le prestazioni di una pompa di questo tipo occorre aumentare o diminuire la velocità di funzionamento. In sostanza, al liquido che passa attraverso una pompa viene fornita dell'energia legata alla prevalenza e alla velocità del liquido stesso. Questa energia fornita nell'unità di tempo rappresenta la potenza resa.

POTENZA RESA

Per potenza resa si intende quella potenza erogata dalla pompa stessa. Il valore di questa potenza resa dipende dalle tre grandezze: portata, prevalenza e peso specifico del liquido pompato. Più questi tre fattori sono grandi più è grande la potenza resa dalla pompa. Per esempio, una pompa che eroga benzina compie un lavore inferiore rispetto a quando eroga acido solforico proprio perché i pesi specifici dei due liquidi sono diversi.

Per pompare il liquido la pompa ha bisogno di essere azionata da un motore che nella quasi totalità dei casi è di tipo elettrico o a scoppio. I motori elettrici consumano energia elettrica mentre i motori a scopio, petrolio o suoi derivati. La potenza di cui la pompa necessita per funzionare è la potenza assorbita.

CALCOLO DELLA POTENZA RESA

Solitamente la potenza resa di una pompa viene espressa in kW o HP, indicando con:

Q = la portata

H = la prevalenza in metri di colonna di liquido (m.c.l.)

 γ = il peso specifico

La potenza resa (P3) è data da:

POTENZA ASSORBITA

Per potenza assorbita si intende la potenza che la pompa assorbe dal motore per dare al liquido quella che prima è stata chiamata potenza resa. Non tutta la potenza assorbita dal motore diventa potenza resa in quanto una parte di questa viene dissipata dagli attriti e un'altra, ancora più importante, viene perduta all'interno della pompa stessa per perdite idrauliche. È quindi chiaro che la potenza resa è sempre inferiore a quella assorbita e il loro rapporto è un numero sempre minore di 1. Tale numero è detto rendimento.

RENDIMENTO

Il rendimento pompa si ottiene quindi dividendo la potenza resa per la potenza assorbita e viene comunemente espresso in percentuale. Per esempio il 75% di rendimento di una pompa sta a significare che soltanto il 75% della potenza assorbita diventa potenza resa e che il rimanente 25% viene perduto in quanto dissipato in attriti. È evidente che più è alto il rendimento di una pompa e più è piccola la parte di potenza assorbita che va perduta. Se poi si considera che il costo dell'energia è quello relativo alla potenza assorbita si capisce subito quanto il rendimento sia importante. Prendendo in esame due pompe con la stessa potenza resa di 1 HP ma con rendimento 50% per la prima e 60% per la seconda, se ne deduce che la prima necessita di 2 HP per fornirne 1 mentre la seconda di 1,67. Ciò significa che il rendimento di una pompa esprime meglio di qualsiasi altro parametro la qualità della pompa stessa ed il relativo risparmio in termini di costo di esercizio.

CALCOLO DEI RENDIMENTI

P1: è la potenza assorbita dal motore in kW (generalmente indicata dal wattmetro)

P2 : è la potenza resa dal motore in kW. Viene misurata al freno (praticamente è la potenza assorbita dalla pompa)

P3: è la potenza resa dalla pompa in kW

Rendimento del motore $\eta = \frac{P_2}{P_1}$

Rendimento del motore $\eta = \frac{P_3}{P_2}$

Rendimento del motore $\eta = \frac{P_3}{P_1}$

POMPE SOMMERGIBILI

PREVALENZA DI UNA POMPA E SUA MISURA

Per prevalenza di una pompa si intende sempre e soltanto quella differenziale e cioè quella data dalla pompa stessa che, generalmente, si esprime in metri. Per rilevare la prevalenza di una pompa di superficie è necessario misurare, durante il funzionamento, il valore della prevalenza alle bocche prestando attenzione di riferire i valori delle letture ad un unico livello detto piano di riferimento. Ora, a seconda dell'installazione si possono avere due casi:

1) che il valore letto sulla bocca di aspirazione sia negativo (cioè inferiore allo zero del manometro) e questo è il caso di quando il livello del liquido prelevato è più basso della bocca di aspirazione.

2) che il valore letto sulla bocca di aspirazione sia positivo (cioè superiore allo zero del manometro) e questo è il caso di quando il livello del liquido prelevato è più alto della bocca di aspirazione (funzionamento sotto battente).

Nel primo caso la prevalenza della pompa è data dalla somma delle due letture mentre nel secondo è data dal valore della prevalenza alla bocca di mandata meno il valore alla bocca di aspirazione.

È necessario infine controllare che i valori letti alle bocche della pompa siano riferiti ad uno stesso diametro cosicché non siano falsati da differenti valori della velocità del liquido nelle sezioni di misura; L'eventuale correzione viene fatta attraverso il calcolo della prevalenza dinamica che è quella parte di prevalenza legata alla velocità del liquido cioè quella parte di prevalenza che il liquido possiede nella sezione di misura in quanto in movimento. La prevalenza dinamica Hd, espressa in metri, è data dalla seguente formula:

$$Hd = \frac{V^2}{2g}$$

v = velocità del fluido nel punto di misura, espressa in m/s dove.

q = accelerazione di gravità (9,81) espressa in m/s²

 $2q = 2 \times 9.81 = 19.62 \text{ m/s}^2$

Il termine di correzione della prevalenza è dato dalla differenza fra la prevalenza dinamica alla bocca di mandata e la prevalenza dinamica alla bocca di aspirazione. È quindi chiaro che se le misure a monte ed a valle della pompa vengono rilevate su tubi di uquale diametro, cioè con liquido ad uquale velocità, tale termine di correzione sarà uguale a zero.

Per rilevare la prevalenza di una pompa con girante immersa è sufficiente misurare, durante il funzionamento, la prevalenza alla bocca di mandata. In questo caso la prevalenza della pompa è data dalla somma del valore letto con la prevalenza dinamica (sempre alla bocca di mandata) e con la differenza di livello esistente fra il pelo libero del liquido prelevato ed il manometro.

PRESTAZIONI DI UNA POMPA AL VARIARE DEL NUMERO DI GIRI

Il numero di giri n della pompa influenza notevolmente le prestazioni della stessa. In assenza di fenomeni di cavitazione sussiste la legge di similitudine che si può esprimere:

$$Q_x = Q_x - \frac{n_x}{n}$$

$$H_x = H x \left(\frac{\mathbf{n}_x}{\mathbf{n}} \right)^2$$

$$P_{2-X} = P_2 x \left(\frac{\mathbf{n}_x}{\mathbf{n}}\right)^3$$

Per esempio raddoppiando il numero di giri (**n**x) si ha:

= il valore della portata raddoppia

= il valore della prevalenza aumenta 4 volte

P2-X = la potenza assorbita dalla pompa aumenta 8 volte

sono valori riferiti a velocità n

Qx - Hx - P2-X sono valori riferiti a velocità nx.

POMPE SOMMERGIBILI

NOZIONI SUI MOTORI ELETTRICI DELLE ELETTROPOMPE

INDICE DELLA SIMBOLOGIA
P ₁ = POTENZA ASSORBITA DAL MOTORE IN KW
P ₂ = POTENZA RESA DAL MOTORE IN KW OPPURE HP
V ~ = TENSIONE ALTERNATA DI ALIMENTAZIONE
Hz = FREQUENZA IN PERIODI/SECONDO DELLA TENSIONE DI ALIMENTAZIONE
${f I}$ = CORRENTE ASSORBITA DAL MOTORE IN AMPERE
$cos\phi = FATTORE DI POTENZA$
n ^{1/min} = VELOCITÀ DI ROTAZIONE IN GIRI AL MINUTOPRIMO
$\eta \qquad = \text{RENDIMENTO (RAPPORTO TRA POTENZA RESA E POTENZA ASSORBITA P2/P1)}$
p = NUMERO DI POLI DEL MOTORE
Cn = COPPIA NOMINALE DEL MOTORE

VELOCITÀ DI ROTAZIONE A VUOTO

La velocità di rotazione a vuoto dei motori elettrici ad induzione, monofase o trifase, si calcola:

$$\mathbf{n}^{\text{1/min}} = \frac{120 \text{ x Hz}}{\text{p}}$$

Velocità di rotazione a vuoto $\mathbf{n}^{\scriptscriptstyle 1/min}$

FREQUENZA HZ	2 POLI	4 POLI		
50	3000	1500		
60	3600	1800		

La velocità a pieno carico è inferiore dal 2% al 7% di quella a vuoto (scorrimento 2% \div 7%).

CORRENTE ASSORBITA

$$\label{eq:Monofase: I = 0} \begin{split} & \frac{1000 \text{ x P}_2 \text{ (kW)}}{\text{V x cos}\phi \text{ x }\eta} & \text{oppure: I = } & \frac{736 \text{ x P}_2 \text{ (HP)}}{\text{V x cos}\phi \text{ x }\eta} \end{split}$$

$$\text{Trifase: I = } & \frac{1000 \text{ x P}_2 \text{ (kW)}}{1.73 \text{ x V x cos}\phi \text{ x }\eta} & \text{oppure: I = } & \frac{736 \text{ x P}_2 \text{ (HP)}}{1.73 \text{ x V x cos}\phi \text{ x }\eta} \end{split}$$

POTENZA ASSORBITA

Monofase: P₁ (kW) =
$$\frac{V \times I \times \cos\phi}{1000}$$
Trifase: P₁ (kW) =
$$\frac{1.73 \times V \times I \times \cos\phi}{1000}$$

POTENZA RESA ALL'ASSE MOTORE

RENDIMENTO

$$\eta = \frac{P_2 (kW)}{P_1 (kW)}$$

POMPE SOMMERGIBILI

FATTORE DI POTENZA

Monofase:
$$cos\phi = \frac{P_2 (kW) \times 1000}{V \times I \times \eta}$$

oppure:
$$cos\phi = \frac{P_1 (kW) \times 1000}{V \times I}$$

Trifase:
$$cos\phi = \frac{P_2 \text{ (kW) x } 1000}{1.73 \text{ x V x I x } \eta}$$

oppure:
$$cos\phi = \frac{P_1 (kW) \times 1000}{1.73 \times V \times I}$$

COPPIA NOMINALE

$$Cn = \frac{P_2(kW) \times 1000}{1.027 \times n^{1/min}}$$
 in Kgm

$$Cn = \frac{P_2 (HP) \times 736}{1.027 \times n^{1/min}}$$
 in Kgm

$$Cn = \frac{702 \text{ x HP}}{\mathbf{n}^{\text{1/min}}} \text{ in decaNewtonmetro}$$

RELAZIONE TRA KW E HP

$$1 \text{ kW} = 1.36 \text{ HP}$$

$$\frac{HP}{1.36} = kW$$

$$kW \times 1,36 = HP$$

CORRENTE DI SPUNTO (ISP)

La corrente di spunto (all'avviamento) è maggiore della corrente nominale di $4 \div 8$ volte secondo la potenza del motore Isp = In x $4 \div 8$

CENNI SUI CONDENSATORI ELETTRICI

La corrente approssimata assorbita da un condensatore è:

$$I = \frac{6,28 \times F \times C \times V}{1.000.000}$$

Dove:

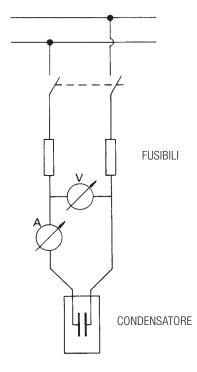
 $\begin{array}{lll} I & = & \text{corrente in ampere assorbita dal condensatore} \\ F & = & \text{frequenza in Hz della tensione di prova} \\ C & = & \text{capacità del condensatore in } \mu F \end{array}$

V = tensione di prova

Esempio:

La corrente assorbita da un condensatore da 14 μ F collegato ad una rete a 220 Volt - 50 Hz, sarà:

$$I = \frac{6,28 \times 50 \times 14 \times 220}{1.000.000} = 0,96 \text{ Ampere}$$


La capacità approssimata di un condensatore si determina:

$$C = \frac{I}{6,28 \times F \times V} \times 1.000.000$$

Esempio:

La capacità di condensatore che assorbe 1,4 Ampere collegato ad una rete a 220 Volt - 50 Hz, sarà:

$$C = \frac{1.4}{6.28 \times 50 \times 220}$$
 $\times 1.000.000 = 20.2 \ \mu F$

AVVIAMENTO STELLA-TRIANGOLO

Il motore normalmente collegato a triangolo Δ viene connesso alla rete con collegamento a stella. La corrente e la coppia di spunto si riducono a 1/3 del valore che avrebbero con il collegamento a triangolo Δ .

PROTEZIONE

Si consiglia di allacciare i motori alla rete attraverso adeguati interruttori magneto-termici a terna di fusibili e comunque in accordo alle Normative vigenti del Paese.

POMPE SOMMERGIBILI

TABELLA PERDITE DI CARICO E VELOCITÀ

Per calcolare le **perdite di carico** in maniera accurata **e la velocità** si usa la seguente tabella:

PORTATA		TUBAZIONI ZINCATE NUOVE DIAMETRI NOMINALI: POLLICI E MM													
FUNIAIA															
.,	., .	2.0	1/2"	3/4"	1"	1"1/4	1"1/2	2"	2"1/2	3"	3"1/2	4"			
I/s	l/min	m ³ /h	15,75	21,25	27	35,75	41,25	52,5	68	80,25	92,5	105	5		
0.17	10	0.6	0,856	0,47	0,291										
0,17	10	0,6	9,01	20,9	0,65										
0,25	15	0,9	1,284	0,705	0,4387	0,249				A DI CALCOLO					
0,20	10	0,3	19,07	4,43	1,38	0,35			WILLIAMS	S (UNI EN 128	45 13.2.1)				
0,33	20	1,2	1,712	0,94	0,582	0,332	0,25								
0,00	20	1,2	32,47	7,55	2,35	0,6	0,3								
0,42	25	1,5	2,14	1,175	0,728	0,415	0,31								
0,12		.,0	49,06	11,41	3,55	0,91	0,45								
0.5	30	1.8	1.8	1,8	2,568	1,411	0,874	0,498	0,37	0,23					
	-	1,7	68,74	15,98	4,98	1,27	0,63	0,2							
0,58	35	2,1	2,996	1,646	1,019	0,581	0,44	0,27							
			91,42	21,26	6,62	1,69	0,84	0,26							
0,67	40	40 2,4		1,881	1,165	0,664	0,5	0,31							
	,			27,22	8,48	2,16	1,08	0,33							
0,83	50	50	50 3		2,351	1,456	0,831	0,62	0,39	0,23					
				41,13	12,81	3,27	1,63	0,5	0,14						
1	60	3,6		2,821	1,747	0,997	0,75	0,46	0,28						
				57,63	17,95	4,58	2,28	0,7	0,2	0.00					
1,17	70	4,2		3,291 76.64	2,039 23,88	1,163	0,87	0,54	0,32	0,23					
				70,04	23,00	1,329	3,03	0,94	0,27	0,12					
1,33	80	4,8			30.57	7,79	3.88	1,2	34	0,20					
					2,621	1,495	1,12	0,69	0,41	0,13					
1,5	90	5,4			38,01	9.69	4.83	1,49	0,42	0,19					
					2,912	1,661	1,25	0,77	0,46	0,33	0,25				
1,67	100	6			46,19	11,77	5,86	1,81	0,51	0,23	0,11				
					3,641	2,077	1,56	0,96	0,57	0,41	0,31	0,24			
2,08	125	7,5			69,79	17,79	8,86	2,74	0,78	0,35	0,17		0,09		
					,	2,492	1,87	1,16	0,69	0,49	0,37	0,29			
2,5	150	9				24,92	12,41	3,84	1,09	0,49	0,24		0,13		
0.00	175	10.5				2,907	2,18	1,35	0,8	0,58	0,43	0,34			
2,92	175	10,5				33,15	16,51	5,1	1,45	0,65	0,32		0,17		

Numeri in bianco: Perdite di carico in m. per ogni 100 m. di tubazione

Numeri in verde: Velocità dell'acqua in m/sec

La tabella si riferisce a tubazioni zincate.

Per materiali diversi moltiplicare per:

- 0,6 tubi PVC
- 0,7 tubi alluminio
- 0,8 tubi acciaio laminato e inox

POMPE SOMMERGIBILI

TABELLA PERDITE DI CARICO E VELOCITÀ Per calcolare le **perdite di carico** in maniera accurata **e la velocità** si usa la seguente tabella:

PORTATA			TUBAZIONI ZINCATE NUOVE																		
			DIAMETRI NOMINALI: POLLICI E MM																		
.,	., .	0.4	1"1/4	1'	'1/2		2"	2'	"1/2	,	3"	3"	1/2		4"	Ę	5"	6	6"	8	Ш
l/s	I/min	m ³ /h	35,75	41	1,25	5	2,5		68	80),25	9	2,5	1	05	1	30	1	55	20)6
3,33	200	12	3,322	2,5		1,54		0,92		0,66		0,5		0,39		0,25					
3,33	200	12	42,43		21,14		6,53		1,85		0,83		0,41		0,22		0,08				
4,17	250	15	4,156	3,12		1,93		1,15		0,82		0,62		0,48		0,31					
1,17	200	10	64,12		31,94		9,87		2,8		1,25		1,63		0,34		0,12				
5	300	18		3,74		2,31		1,38		0,99		0,74		0,58		0,38		0,27			
				4.00	44,75	0.00	13,83	4.04	3,92	4.00	1,75	0.00	0,88		0,47	0.5	0,17	0.05	0,07		
6,67	400	24		4,99	76,2	3,08	23,55	1,84	0.00	1,32	0.00	0,99	1.40	0,77	0.0	0,5	0,28	0,35	0.10		
					76,2	3.85	23,55	2.3	6,68	1.65	2,98	1,24	1,49	0.96	0,8	0.63	0,28	0.44	0,12		
8,33	500	30				3,00	35,58	2,3	10,09	1,00	4,51	1,24	2,26	0,90	1,22	0,00	0,43	0,44	0,18		
						4,62	00,00	2,75	10,00	1,98	7,01	1,49	2,20	1,16	1,22	0,75	0,40	0,53	0,10	0,3	
10	600	36				1,02	49,85	2,70	14,14	1,00	6,31	1,10	3,16	1,10	1,7	0,10	0,6	0,00	0,26	0,0	0,06
								3,21		2,31		1,74		1,35	· ·	0,88		0,62		0,35	
11,67	700	42							18,81		8,4		4,2		2,27		0,8		0,34		0,09
40.00	000	40						3,67		2,64		1,99		1,54		1,01		0,71		0,4	
13,33	800	48							24,08		10,75		5,38		2,9		1,03		0,44		0,11
15	900	54						4,13		2,97		2,23		1,73		1,13		0,8		0,45	
10	300	J4							29,94		13,37		6,69		3,61		1,28		0,54		0,14
16,67	1000	60						4,59		3,3		2,48		1,93		1,26		0,88		0,5	
,									36,39		16,24		8,13		4,39		1,55		0,66		0,16
20,83	1250	250 75								4,12		3,1		2,41		1,57		1,1		0,63	
											24,54		12,29		6,63		2,34		0,99		0,25
25	1500	90								4,95	04.00	3,72	47.00	2,89	0.00	1,88	0.00	1,33	4.00	0,75	0.05
											34,39	4,34	17,22	3,37	9,29	2,2	3,28	1,55	1,39	0,88	0,35
29,17	1750	105										4,04	22,9	0,01	12,35	۷,۷	4,37	1,30	1,85	0,00	0,46
												4,96	۷,۵	3,85	12,00	2,5	7,01	1,77	1,00	1	0,70
33,33	2000	120										.,50	29,31	0,00	15,81	_,,,	5,59	.,.,	2,37		0,59
														4,81	-,	3,14	-,	2,21	,	1,25	-,
41,67	2500	150													23,89		8,44		3,59		0,9
F0	2000	100														3,77		2,65		1,5	
50	3000	180			ORMUL												11,83		5,02		1,26
66,67	6,67 4000	240		l V	VILLIAM	S (UNI	EN 128	45 13	.2.1)							5,03		3,53		2	
00,07	4000	240															20,15		8,55		2,14
83,33	5000	300																4,42		2,5	
,																			12,93		3,23

Numeri in bianco: Perdite di carico in m. per ogni 100 m. di tubazione

Numeri in verde: Velocità dell'acqua in m/sec

La tabella si riferisce a tubazioni zincate.

Per materiali diversi moltiplicare per:

- 0,6 tubi PVC
- 0,7 tubi alluminio
- 0,8 tubi acciaio laminato e inox

POMPE SOMMERGIBILI

PERDITE DI CARICO

in centimetri colonna d'acqua nelle curve, saracinesche, valvole

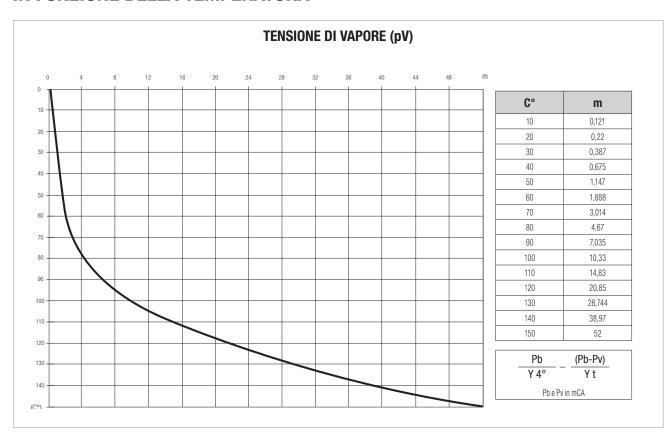
S/I	CURVE AD ANGOLO VIVO				CURVE NORMALI								AT C	
VELOCITÀ DELL'ACQUA IN m/s		3/			_							VALVOLE DI FONDO	VALVOLE DI RITEGNO	PERDITE DI ENERGIA ALL'USCITA DEI TUBI DI SCARICO V ² :2G
VEL O(α = 30°	α = 40°	α = 60°	α = 80°	α = 90°	$\frac{d}{R} = 0.4$	$\frac{d}{R} = 0.6$	$\frac{d}{R} = 0.8$	$\frac{d}{R} = 1$	$\frac{d}{R} = 1.5$	SARACINESCHENORMALI		Λ	PERDIT DEI .
0,10	0,03	0,04	0,05	0,07	008	0,07	0,08	0,01	0,0155	0,027	0,03	30	30	0,05
0,15	0,06	0,73	0,1	0,14	0,17	0,016	0,019	0,024	0,033	0,06	0,033	31	31	0,12
0,2	0,11	0,13	0,18	0,26	0,31	0,028	0,033	0,04	0,059	0,11	0,058	31	31	0,21
0,25	0,17	0,21	0,28	0,4	0,48	0,044	0,052	0,063	0,091	0,17	0,09	31	31	0,32
0,3	0,25	0,3	0,41	0,6	0,7	0,063	0,074	0,09	0,13	0,25	0,13	31	31	0,46
0,35	0,33	0,4	0,54	0,8	0,93	0,085	0,10	0,12	0,18	0,33	0,18	31	31	0,62
0,14	0,43	0,52	0,71	1,0	1,2	0,11	0,13	0,16	0,23	0,43	0,23	32	31	0,82
0,5	0,67	0,81	1,1	1,6	1,9	0,18	0,21	0,26	0,37	0,67	0,37	33	32	1,27
0,6	0,97	1,2	1,6	2,3	2,8	0,25	0,29	0,36	0,52	0,97	0,52	34	32	1,84
0,7	1,35	1,65	2,2	3,2	3,9	0,34	0,40	0,48	0,70	1,35	0,7	35	32	2,5
0,8	1,7	2,1	2,8	4,0	4,8	0,45	0,53	0,64	0,93	1,7	0,95	36	33	3,3
0,9	2,2	2,7	6	5,2	6,2	0,57	0,67	0,82	1,18	2,2	1,2	37	34	4,2
1,0	2,7	3,3	4,5	6,4	7,6	0,7	0,82	1,0	1,45	2,7	1,45	38	35	5,1
1,5	6,0	7,3	10,0	14,0	17,0	1,6	1,9	2,3	3,3	6,0	3,3	47	40	11,5
2,0	11,0	14,0	18,0	26,0	31,0	2,8	3,3	4,0	5,8	11,0	5,8	61	48	20,4
2,5	17,0	21,0	28,0	40,0	48,0	4,4	5,2	6,3	9,1	17,0	9,1	78	58	32,0
3,0	25,0	30,0	41,0	60,0	70,0	6,3	7,4	9,0	13,0	25,0	13,0	100	71	46,0
3,5	33,0	40,0	55,0	78,0	93,0	8,5	10,0	12,0	18,0	33,0	18,0	123	85	62,0
4,0	43,0	52,0	70,0	100,0	120,0	11,0	13,0	16,0	23,0	42,0	23,0	150	100	82,0
4,5	55,0	67,0	90,0	130,0	160,0	14,0	21,0	26,0	37,0	55,0	37,0	190	120	103,0
5,0	67,0	82,0	110,0	160,0	190,0	18,0	29,0	36,0	52,0	67,0	52,0	220	140	127,0

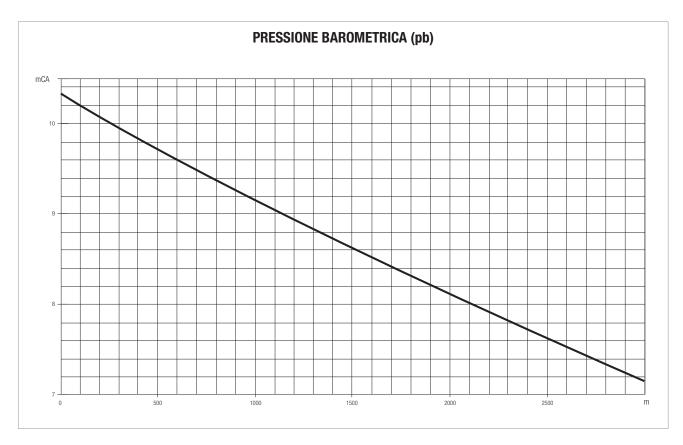
v = velocità dell'acqua in metri al secondo

$$h = \lambda \ x - \frac{100}{d} x - \frac{v^c}{2g}$$
 $\lambda = 0.02 + \frac{0.0018}{\sqrt{v \ x \ d}}$

La perdita di carico nelle curve è soltanto quella dovuta alla contrazione dei filetti liquidi per cambiamento di direzione (lo sviluppo delle curve deve essere quindi compreso nella lunghezza della tubazione) mentre la perdita di carico nelle valvole e saracinesche è stata determinata in base a prove tecniche.

La perdita di carico per saracinesche e curve normali è pari a quella di 5 metri di tubazione diritta mentre per valvole di ritegno a clapet a 15 metri. I valori indicati si intendono per tubazione internamente liscia. In caso di tubazione incrostata occorrerà considerare i corrispondenti aumenti.




d = diametro del tubo in metri

 $h=perdita\ di\ carico\ in\ centimetri\ colonna\ d'acqua\ per\ ogni\ metro\ di\ tubazione\ calcolata\ secondo\ la\ formula\ di\ Lang:$

POMPE SOMMERGIBILI

TENSIONE DI VAPORE E PESO SPECIFICO DELL'ACQUA IN FUNZIONE DELLA TEMPERATURA

POMPE SOMMERGIBILI

TABELLA DI CONVERSIONE DELLE UNITÀ DI MISURA

ODANDEZZA	SISTEMA	LINUTÀ DI MICUDA	OLEADOL O	CONVERSIONI					
GRANDEZZA	UNITÀ DI MISURA	UNITÀ DI MISURA	SIMBOLO	SISTEMA TECNICO	SISTEMA ANGLOSASSONE				
LUNGHEZZA	Tecnico e Internazionale	metro decimetro centimetro millimetro	m dm cm mm	1 dm = 0,1 m 1 cm = 0,01 m 1 mm = 0,001 m		1 m = 3,28 ft 1 dm = 3,937 in 1 cm = 0,3937 in			
LUNUIILZZA	Anglosassone	pollice (inch) piede (foot) iarda (yard)	1", in 1", ft yd	1" = 25,4 mm 1" ft = 0,3048 m 1 yd = 0,9144 m		1 ft = 12" 1 yd = 3 ft = 26"			
CUDEDEIGIE	Tecnico e Internazionale	metro quadrato centimetro quadrato millimetro quadrato	m ² cm ² mm ²	1cm ² = 0,0001 m ² 1 mm ² = 0,01 cm ²		$1m^2 = 1.196 \text{ sq.yd}$ $1m^2 = 10.764 \text{ sq.ft}$ $1 \text{ cm}^2 = 0.155 \text{ sq.in}$			
SUPERFICIE	Anglosassone	pollice quadrato piede quadrato iarda quadrato	sq.in sq.ft sq.yd	1 sq.in = 6,45 cm ² 1 sq.ft = 0,0929 m ² 1 sq.yd = 0,836 m ²		1 sq.ft = 144 sq.in 1 sq.yd = 1.296 sq.in 1 sq.yd = 9 sq.ft			
VOLUME	Tecnico e Internazionale	metro cubo decimetro cubo centimetro cubo litro	m ³ cm ³ mm ³	1 m ³ = 1.000 dm ³ 1 cm ³ = 0.001 m = 1.000 cm ³ 1 mm ³ = 0.001 dm ³ 1 l = dm ³		$\begin{array}{l} 1 \text{ dm}^3 = 0.22 \text{ Imp.gal} \\ 1 \text{ dm}^3 = 0.264 \text{ US.gal} \\ 1 \text{ dm}^3 = 61,0 \text{ cu.in} \end{array}$			
VOLUME	Anglosassone	pollice cubo piede cubo gallone inglese gallone USA	cu.in cu.ft Imp.gal USA.gal	1 cu.in = 16,39 cm ³ 1 cu.ft = 28,34 m ³ 1 lmp.gal = 4,546 m ³ 1 US.gal = 3,785 dm ³		1 Imp.gal = 1,201 US.gal 1 US.gal = 0,833 Imp.gal			
	Tecnico e Internazionale	grado centrigrado grado Kevin	°C °K	°C = °K-273 °K = °C + 273		°C = 5/9 x (°F - 32) °K = 5/9 x (°F - 32) + 273			
TEMPERATURA	Anglosassone	grado Fahreinheit	°F	°F = 9/5 x °C + 32		-			
	punto di congelame	nto dell'acqua a pressione atm dell'acqua a pressione atmosfi	iosferica: erica:	000°C = 273 °K = 032 100°C = 373 °K = 212	2 °F 2 °F				
PESO PESO	Tecnico	kilogrammo	kg	_	1 kg = 9,81 N	1 kg = 2,203 lb			
е	Internazionale	Newton	N	1 N = 0,102 kg	-	1 N = 0,22546 lb			
FORZA	Anglosassone	libbra (pound)	lb	1 IB = 0,454 kg	1 lb = 4,452 N	_			
	Tecnico	kilogrammo su decimetro cubo	kg/dm ³	-	1 kg/dm ³ = 9,807 N/dm ³	$1 \text{ kg/dm}^3 = 62,46 \text{ lb/cu.ft}$			
PESO Specifico	Internazionale	Newton su decimetro cubo	N/dm ³	$1 \text{ N/dm}^3 = 0,102 \text{ kg/dm}^3$	-	1 N/dm ³ = 6,36 lb/cu.ft			
	Anglosassone	libbra su piede cubo	lb/dm ³	1 lb/cu.ft = 0,01600 kg/dm ³	1 lb/cu.ft = 0,160 N/dm ³	-			
	Tecnico	atmosfera tecnica	kg/cm ²	-	1 kg/cm ² = 98,067 kPa 1 kg/cm ² = 0,9807 bar	$1 \text{ kg/cm}^2 = 14,22 \text{ psi}$			
PRESSIONE	Internazionale	Pascal kiloPascal baria	Pa kPa bar	1 kPa = 0,0102 kg/cm ² 1 bar = 1,02 kg/cm ²	1 kPa = 1.000 Pa 1 bar = 100.000 Pa	1 kPa = 0,145 psi 1 bar = 14,50 psi			
	Anglosassone	libbra per pollice quadrato	psi	1 psi = 0,0703 kg/cm ²	1 psi = 0,06895 bar 1 psi = 6,894 kPa	-			
	Tecnico	litri al minuto litri al secondo metri cubi all'ora	I/min I/s m ³ /h	1 I/min = 0,0167 I/s 1 I/s = 3,6 m ³ /h 1 m ³ /h = 16,667 I/min	1 l/s = 0,001 m ³ /s	1 l /min = 0,22 imp.g.p.m. 1 l /min = 0,264 US.g.p.m. 1 m^3/h = 3,666 imp.g.p.m. 1 m^3/h = 4,403 US.g.p.m.			
PORTATA	Internazionale	metri cubi al secondo	m³/s	1 m ³ /s = 1.000 l/s 1 m ³ /s = 3.600 m ³ /h	-	1 m ³ /s = 13.198 imp.g.p.m. 1 m ³ /s = 15.852 US.g.p.m.			
	Anglosassone	gallone imperiale al minuto gallone USA al minuto	Imp.g.p.m. US.g.p.m.	1 Imp.g.p.m. = 4,546 l/min 1 Imp.g.p.m. = 0,273 m ³ /h 1 US.g.p.m. = 3,785 l/min 1 US.g.p.m. = 0,227 m ³ /h		1 Imp.g.p.m. = 1,201 US.g.p.m. 1 US.g.p.m. = 0,833 Imp.g.p.m.			
MOMENTO	Tecnico	kilogrammo per metro	kgm	-	1 kgm = 9,807 Nm	1 kgm = 7,233 ft.lb			
MOMENTO TORCENTE	Internazionale	Newton per metro	Nm	1 Nm = 0,102 kgm	-	1 Nm = 0,7376 ft.lb			
	Anglosassone	foot pound	ft.lb	1 ft.lb = 0,138 kgm	1 ft.lb = 1,358 Nm	_			
LAVORO	Tecnico	kilogrammo per metro cavallo-vapore ora	kgm CVh		1 kgm = 9,807 J 1 CVh = 0,736 kWh	1 kgm = 7,233 ft.lb 1 Nm = 0,986 HP.hr.			
ed ENERGIA	Internazionale	Joule kilowatt ora	J kWhq	1 J = 0,102 kgm kWh = 1,36 CVh	-	1 Nm = 0,7376 ft.lb 1 Nm = 0,7376 ft.lb			
ENERGIA	Anglosassone	foot pound Horse power hour	ft.lb HP.hr.	1 ft.lb = 0.138 kgm 1 HP.hr. = 1,014 CVh	1 ft.lb = 0.358 Nm 1 HP.hr. = 0,746 kWh	-			
DOTEN7A	Tecnico	Horse power	HP	1 HP = 0,736 kW	1 HP = 736 W	-			
POTENZA	Internazionale	Watt kiloWatt	W kW	1 W = 0,00136 Hp 1 kW = 1,36 Hp	1 kW = 1.000 W	-			
	Tecnico	stokes centistokes	1 St 1 cSt	1 St = 1 cm ² /s 1 cSt = 0,01 St	1 St = 0,0001 m ² /s	1 St = 0,00107 ft ² /s			
VISCOSITÀ CINEMATICA	Internazionale	m²/s	m²/s	1 m ² /s = 10.000 St	1 m ² /s = 10.000 cm ² /s	1 m ² /s = 10,764 ft ² /s			
LINE IVIALILA		piede quadrato al							

NORMATIVE ACQUE REFLUE

UNI EN 12050-1

PRINCIPI PER COSTRUZIONE E PROVE DI IMPIANTI DI SOLLEVAMENTO PER ACQUE REFLUE CONTENENTI MATERIALE FECALE

SOMMARIO

La norma si applica a impianti di sollevamento per acque reflue contenenti materiale fecale, che possono essere utilizzati anche per il trattamento di acque reflue non contenenti materiale fecale, per il drenaggio di ubicazioni di edifici e cantieri al disotto del livello di piena per evitare l'eventuale riflusso di acque reflue nell'edificio. Questa norma europea contiene requisiti generali, principi base per la costruzione e le prove, nonché informazioni sui materiali e sulla valutazione di conformità.

PRINCIPI GENERALI

Requisiti di pompaggio

Gli impianti di sollevamento per materiale fecale devono essere in grado di pompare acque reflue secondo quanto stabilito nella EN 12056-1, incluso tutto il materiale solido generalmente contenuto nelle acque reflue domestiche. Essi devono essere progettati in modo tale da evitare l'accumulo di materiale solido.

La normativa prevede che il passaggio libero nell'impianto di sollevamento per materiale fecale, in qualsiasi punto compreso tra l'ingresso del materiale fecale nell'impianto e il dispositivo di pompaggio, deve essere di almeno 40 mm.

Inoltre l'impianto vasca più tubazioni e la pompa devono garantire che la velocità di flusso nella tubazione di scarico sia almeno 0,7 m/s nel punto di servizio.

Requisiti serbatoio

Tranne che per quanto riguarda le aperture di ingresso, uscita e ventilazione, i serbatoi di raccolta devono essere chiusi, a tenuta d'acqua e a tenuta dell'odore. L'interno del serbatoio di raccolta di un impianto di sollevamento per materiale fecale può essere considerato come una zona contenente gas potenzialmente esplosivi. In questo senso il serbatoio e altri raccordi meccanici non sono soggetti ad alcun requisito particolare, purché si adottino le misure necessarie ad evitare che si verifichino esplosioni all'interno del serbatoio.

PROVE

Efficacia di sollevamento dell'impianto

La norma prevede una specifica configurazione dove comprovare l'effettivo pompaggio di corpi solidi, il test simula il passaggio di corpi solidi verificando il trasferimento di stracci da pavimento di 40cm x 25cm, i panni per un totale di 6 vengono aggiunti ad intervalli regolari all'impianto di pompaggio. La prova si considera superata se l'efficacia di sollevamento non viene compromessa e tutti i panni da pavimento vengono pompati entro la fine della prova.

Prove sulle perdite

Per le vasche sono anche previste delle prove di tenuta stagna e all'odore, dove l'impianto e le tubazioni di scarico sono sottoposte a sovrappressioni di 0,5 bar e ne viene verificata la tenuta per 10 minuti, viene considerato test superato quando non si verifica nessuna perdita.

PRINCIPI DI COSTRUZIONE

Pompaggio di solidi

Gli impianti di sollevamento per materiale fecale devono essere in grado di pompare acque reflue secondo quanto stabilito nella EN 12056-1, incluso tutto il materiale solido generalmente contenuto nelle acque reflue domestiche. Essi devono essere progettati in modo tale da evitare l'accumulo di materiale solido.

Connessioni dei tubi

Le dimensioni delle connessioni di ingresso, scarico e ventilazione devono consentire l'utilizzo di tubi di dimensioni normalizzate. I raccordi devono essere flessibili e in grado di resistere alla pressione massima di mandata della pompa senza perdite.

Dimensioni minime delle tubazioni di ventilazione

Il raccordo delle tubazioni di ventilazione deve avere un diametro nominale pari almeno a DN 50.

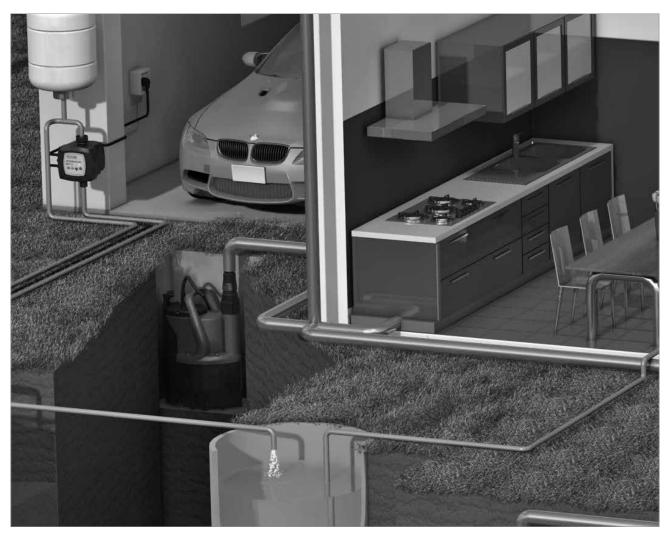
Passaggio minimo dell'impianto

Il passaggio libero nell'impianto di sollevamento per materiale fecale, in qualsiasi punto compreso tra l'ingresso del materiale fecale nell'impianto e il dispositivo di pompaggio, deve essere di almeno 40 mm.

Dimensione minima delle connessioni di scarico per impianti di sollevamento per materiale fecale senza macerazione

I raccordi di scarico degli impianti di sollevamento per materiale fecale senza macerazione devono essere almeno DN 80. Il passaggio libero della valvola di non ritorno deve essere almeno 60 mm. Quando necessario, la connessione di scarico deve essere almeno pari a DN 50 e il passaggio libero della valvola di non ritorno deve essere di almeno 50 mm.

Dimensione minima delle tubazioni di scarico per impianti di sollevamento per materiale fecale con macerazione


Le connessioni di scarico, la tubazione di scarico e le valvole di non ritorno per gli impianti di sollevamento per materiale fecale con macerazione devono essere almeno di diametro DN 32.

Dispositivi di fissaggio

Gli impianti di sollevamento per materiale fecale devono comprendere dispositivi di fissaggio in modo da evitare la rotazione o il galleggiamento.

SCHEMI DI INSTALLAZIONE - POMPE SOMMERGIBILI

APPLICAZIONI

Drenaggio di acqua da seminterrati e garage Pozzi di raccolta dell'acqua piovana Pozzi di drenaggio Sollevamento di acqua da serbatoi o fiumi

Altre applicazioni

NOVA: ideale per il pompaggio di acque torbide senza fibre FEKA: ideale per il pompaggio di acque luride da fossa biologica

CARATTERISTICHE

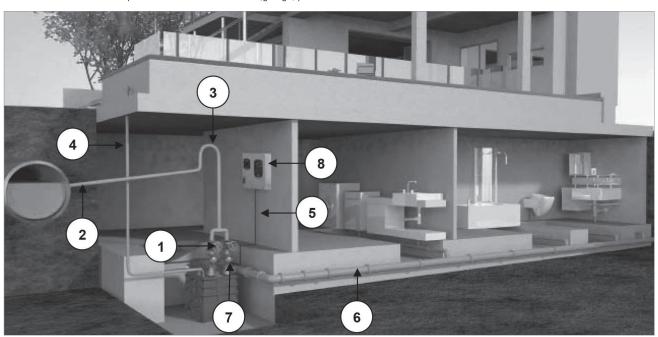
Campo di funzionamento da 1 a 16m³ e con prevalenza massima di 10.2 metri Temperature dell'acqua comprese fra 0° e 35° Passaggio libero per particelle da 5mm a 25mm Massima profondità di immersione 7m Leggere e di facile trasporto

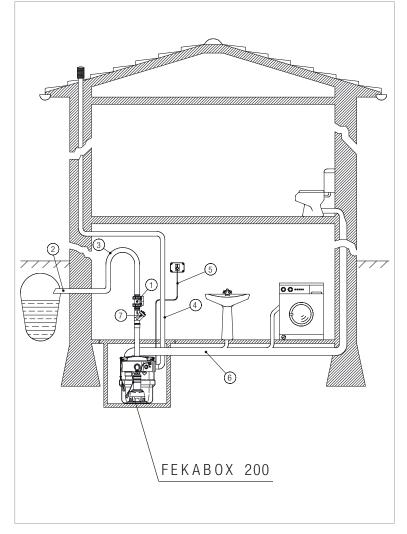
INFORMAZIONI IMPORTANTI:

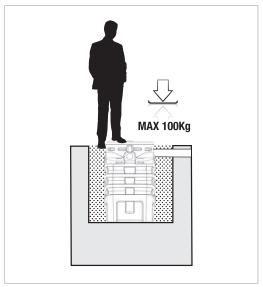
Installare un supporto al fine di non lasciare la pompa appoggiata al fondo Non installare tubi di diametro inferiore al diametro di mandata della pompa Installare sempre in posizione verticale

Per le versioni con galleggiante per il funzionamento automatico, assicurarsi che il braccetto o il galleggiante flottante possa muoversi liberamente e senza incagli nell'installazione.

Se persone sono a contatto con l'acqua presente nel serbatoio dove la pompa è installata, non connettere l'alimentazione elettrica.


Immergere la pompa completamente per prevenire surriscaldamenti del motore


Assicurarsi che non siano presenti sacche d'aria nella pompa.

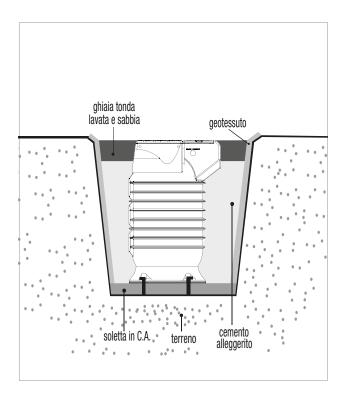

STAZIONI AUTOMATICHE DI SOLLEVAMENTO

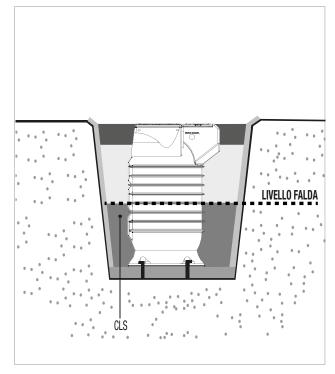
ESEMPI DI INSTALLAZIONEL'installazione può avvenire sia in superficie che nel sottosuolo, ove è richiesto il superamento di barriere del terreno per l'allacciamento a reti fognarie anche a distanza. FEKAFOS può essere installato in cantine, garage, pozzetti interrati.

RIFERIMENTO	DESCRIZIONE
1	Valvola a sfera di intercettazione
2	Mandata
3	Sifone
4	Ventilazione
5	Cavo alimentazione
6	Raccolta
7	Valvola di non ritorno
8	Quadro di comando E-BOX (solo per modelli fekafos)

Installazione da esterni senza struttura portante interrata con sabbia. Calpestabile.

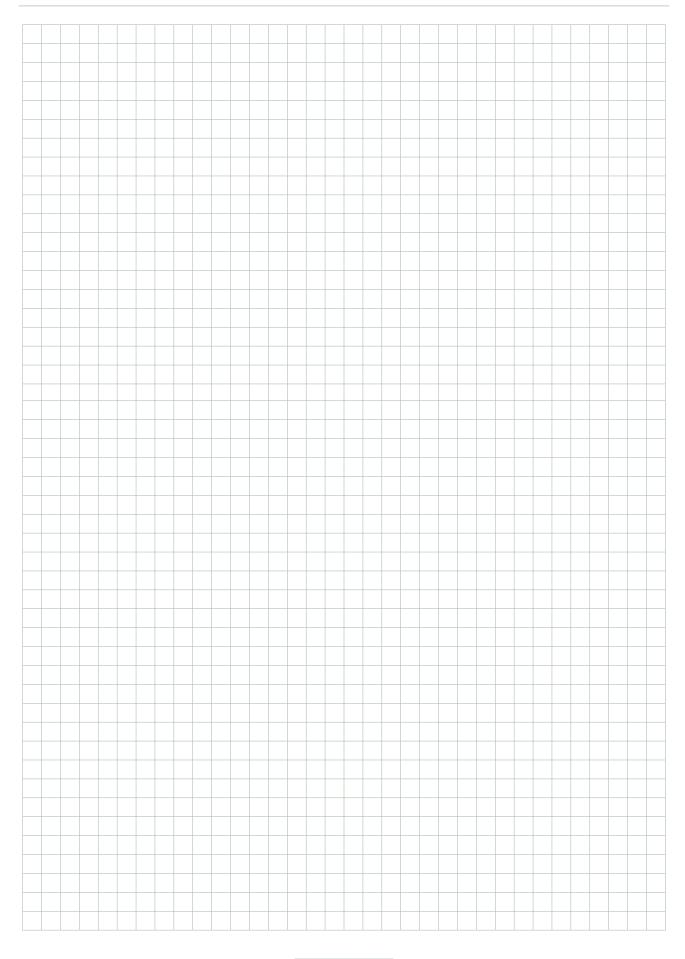
STAZIONI AUTOMATICHE DI SOLLEVAMENTO


POSIZIONAMENTO STAZIONI DI POMPAGGIO FEKAFOS MAXI 1200, 3600


Interrata all'esterno di un edificio, realizzare una platea di appoggio in C.A di adeguata resistenza, calcolata da tecnico abilitato. Posizionare la vasca sopra la platea appoggio in c.a. ed effettuare dei fori sulla stessa in corrispondenza delle apposite sedi di aggancio realizzate sulla base del manufatto. Inserire quindi delle viti a pressione nei fori realizzati e agganciare la vasca.

Al fine di evitare anomale deformazioni sui serbatoi e sulle torrette di ispezione, durante il rinfianco, mantenere il livello dell'acqua all'interno sempre superiore al livello di rinfianco. Procedere per strati successivi di 15/20 cm riempiendo prima il serbatoio d'acqua e poi rinfiancare come indicato nel disegno con cemento alleggerito.

Ricoprire infine con uno strato di ghiaia tonda lavata e sabbia il manufatto, fino a ricoprirlo completamente.


In caso di acqua di falda, realizzata la soletta in cemento armato, riempire la vasca con acqua fino al raggiungimento dei livelli di falda rinfiancarla esternamente per il medesimo spessore con del calcestruzzo.

NOTE

Via Marco Polo, 14 - 35035 Mestrino (PD) Italy - Tel. +39.049.5125000 - Fax +39.049.5125950

www.dabpumps.com

Selezione prodotti on-line

DAB PUMPS LTD.

Unit 6 Gilberd Court Newcomen Way, Severalls Park CO4 9WN Colchester ordersuk@dwtgroup.com

DAB PUMPS BV

'tHofveld 6 C1 1702 Groot Bijgaarden - Belgium in fo. belgium@dwtgroup.comTel. +32 2 4668353

DAB PUMPS B.V.

Statenlaan, 4 5223 LA, 's-Hertogenbosch Nederland info.nl@dabpumps.com Tel. +31 416 387280

DAB PUMPS GMBH

Am Nordpark 3 D - 41069 Mönchengladbach - Germany info.germany@dwtgroup.com Tel. +49 2161 47388-0 Fax +49 2161 47388-36

DAB PUMPS IBERICA S.L.

Calle Verano 18-20-22 28850 - Torrejón de Ardoz - Madrid Spain Info.spain@dwtgroup.com Tel. +34 91 6569545

DAB PUMPS HUNGARY KFT.

H-8800 Nagykanizsa, Buda Ernő u.5 Tel. +36 93501700

DAB PUMPS POLAND Sp. z o.o.

Ul. Janka Muzykanta 60 02188 Warszawa - Poland sprzedaz@dabpumps.com.pl

DAB PUMPS INC.

3226 Benchmark Drive Ladson, SC 29456 - USA info.usa@dwtgroup.com Tel. 1- 843-797-5002 Fax 1-843-797-3366

DAB PUMPS SOUTH AFRICA (PTY) LTD

Twenty One industrial Estate, 16 Purlin Street, Unit B, Warehouse 4 Olifantsfontein -1667 - South Africa info.sa@dwtgroup.com Tel. +27 12 361 3997

DAB PUMPS (QINGDAO) CO. LTD.

No.10 Xindong Road Jiulong Town, Jiaozhou City 266319 Qingdao (Shandong) - China sales.cn@dwtgroup.com Tel. +86 400 186 8280 Fax +86 53286812210

DAB PUMPS DE MÉXICO, S.A. DE C.V.

Av Amsterdam 101 Local 4 Col. Hipódromo Condesa. Del. Cuauhtémoc CP 06170 Ciudad de México Tel. +52 55 6719 0493

DAB PUMPS OCEANIA PTY LTD

426 South Gippsland Highway, Dandenong South VIC 3175 – Australia info.oceania@dwtgroup.com Tel. +61 1300 378 677

PT DAB PUMPS INDONESIA

Satrio Tower lantai 26 unit C-D, Jl. Prof. Dr. Satrio Kav. C4, Kel. Kuningan Timur, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta. - Indonesia Tel. +62 2129222850